Cadmium removal from aqueous solution by brown seaweed, Sargassum angustifolium

2015 ◽  
Vol 32 (10) ◽  
pp. 2053-2066 ◽  
Author(s):  
Seyed Ali Jafari ◽  
Abbas Jamali ◽  
Asma Hosseini
2020 ◽  
Vol 1 (1) ◽  
pp. 20-27

Cloud Point Extraction (CPE) as an effective method for pre-concentration and separation of cadmium from aqueous solution is widely utilized. This study involves a surfactant mediated CPE procedure in order to remove cadmium from waste water using Polythiophene nanoparticle and Triton X- 100 as a non – ionic surfactant. Polythiophene – coated iron nanoparticles was successfully synthesized with novel method and as a super magnetic nano-particles (MNPs) for cadmium removal from aqueous solution was evaluated. Polythophene nano-particles emulsifying method have been synthesized and fabricated. Fabricated nano-particle was characterized by Fourier-transform infrared spectroscopy (FTIR), and analysed transmission electron microscopy (SEM). Effects of pH, buffer volume, extraction time, temperature, amount of nano-particle were essentially investigated. To reach in optimum conditions, related experiments were replicated and accomplished as well. For removal of cadmium by CPE approach the optimization conditions were gained at pH = 7 , volume of buffer acid 1.5 millilitre , electrolyte concentration (NaCl) of 10 -3 mole L-1 , Trinton concentration 5 %, cloud point temperature 80 0 C , extraction time 40 minutes, and 5 mg of modified polythiophene nano-particle. The calibration graph was liner with a correlation coefficient of 0. 9984 and represents appropriate liner correlation with an amount and concentration. The results revealed that 5 gram of modified nanoparticle can significantly increase the efficiency of cadmium removal.


2015 ◽  
Vol 43 (3) ◽  
pp. 277-281 ◽  
Author(s):  
M Rahman ◽  
S Gul ◽  
M Ajmal ◽  
A Iqbal ◽  
Akk Achakzai

Removal of cadmium from aqueous solution was studied by using Quetta pine (Pinus halepensis Mill.) leaves. Batch adsorption experiments were performed as a function of appropriate equilibrium time, pH, concentration of adsorbate and amount of adsorbent. The optimum pH required for maximum adsorption was found to be 7.0 and the maximum contact time for the equilibrium was 30 minutes at adsorbent dose of 10 g. The maximum adsorption efficiency of cadmium removal was 98.50%. The results were better fitted by Langmuir than Freundlich isotherm. The separation factor of equilibrium 0.12 and 0.67 showed that Quetta pine leaves are good adsorbent of cadmium from aqueous solution DOI: http://dx.doi.org/10.3329/bjb.v43i3.21598 Bangladesh J. Bot. 43(3): 277-281, 2014 (December)


2014 ◽  
Vol 57 (7) ◽  
pp. 3283-3291 ◽  
Author(s):  
Laleh Divband Hafshejani ◽  
Saeed Boroomand Nasab ◽  
Mostafa Moradzadeh ◽  
Sara Divband ◽  
Jahangir Abedi Koupai

Sign in / Sign up

Export Citation Format

Share Document