scholarly journals Cadmium removal from aqueous solution by green synthesis zero valent silver nanoparticles with Benjamina leaves extract

2017 ◽  
Vol 43 (4) ◽  
pp. 269-274 ◽  
Author(s):  
Khairia M. Al-Qahtani
Nano Hybrids ◽  
2013 ◽  
Vol 4 ◽  
pp. 87-98 ◽  
Author(s):  
Haroon Haiza ◽  
A. Azizan ◽  
Aizat Hazwan Mohidin ◽  
D.S.C. Halin

In this work, silver nanoparticles have been successfully prepared with a simple, cost-effective and reproducible aqueous room temperature green synthesis method. Honey was chosen as the eco-friendly reducing and stabilizing agent replacing most reported reducing agents such as hydrazine, sodium borohydride (NaBH4) and dimethyl formamide (DMF) which are highly reactive chemicals but also pose a biological risk to the society and environment. The size and shape of silver nanoparticles were modulated by varying the honey concentration and pH of the aqueous solution that contain silver nitrate as the silver precursor, sodium hydroxide as the pH regulator and ethylene glycol as the solvent. The silver nanoparticles obtained are characterized by field-emission scanning electron microscope (FESEM), ultraviolet-visible spectra (UV-Vis) and Fourier transform infrared spectroscopy (FTIR). From SEM analysis, it was found that by increasing the concentration of honey, the size of silver nanoparticles produced decreased, from the range of 18.98 nm - 26.05 nm for 10 g of honey to 15.63 nm - 17.86 nm for 40 g of honey. Similarly, the particle size decreased as the pH of the aqueous solution increased. UV-Vis spectra revealed large anisotropic and polydispersed Ag nanoparticle were produced.


2022 ◽  
Author(s):  
Ruby Ruby ◽  
Aryan Aryan ◽  
Mohan Singh Mehata

An environmentally friendly, green synthesis process has opted to synthesize silver nanoparticles (AgNPs) in an aqueous solution from a new remedial plant, Bregnia-Vitis-Idaea leaves act like natural capping and reducing...


Optik ◽  
2016 ◽  
Vol 127 (22) ◽  
pp. 10378-10388 ◽  
Author(s):  
Chunfa Dong ◽  
Xianglin Zhang ◽  
Hao Cai ◽  
Chuanliang Cao

2020 ◽  
Vol 21 (3) ◽  
pp. 206-218 ◽  
Author(s):  
Sadia Nazer ◽  
Saiqa Andleeb ◽  
Shaukat Ali ◽  
Nazia Gulzar ◽  
Tariq Iqbal ◽  
...  

Background: Multi-drug resistance in bacterial pathogens is a major concern of today. Green synthesis technology is being used to cure infectious diseases. Objectives: The aim of the current research was to analyze the antibacterial, antioxidant, and phytochemical screening of green synthesized silver nanoparticles using Ajuga bracteosa. Methods: Extract of A. bracteosa was prepared by maceration technique. Silver nanoparticles were synthesized using A. bracteosa extract and were confirmed by UV-Vis spectrophotometer, Scanning Electron Microscope (SEM) and Fourier Transform Infrared Spectroscopy (FTIR). The antibacterial, anti-biofilm, cell proliferation inhibition, TLC-Bioautography, TLC-Spot screening, antioxidant, and phytochemical screening were also investigated. Results: UV-Vis spectrum and Scanning electron microscopy confirmed the synthesis of green nanoparticles at 400 nm with tube-like structures. FTIR spectrum showed that functional groups of nanoparticles have a role in capping and stability of AgNP. Agar well diffusion assay represented the maximum antibacterial effect of ABAgNPs against Escherichia coli, Klebsiella pneumoniae, Streptococcus pyogenes, Staphylococcus aureus, and Pseudomonas aeruginosa at 0.10 g/mL concentration compared to ABaqu. Two types of interactions among nanoparticles, aqueous extract, and antibiotics (Synergistic and additive) were recorded against tested pathogens. Crystal violet, MTT, TLC-bio-autography, and spot screening supported the findings of the antibacterial assay. Highest antioxidant potential effect in ABaqu was 14.62% (DPPH) and 13.64% (ABTS) while 4.85% (DPPH) and 4.86% (ABTS) was recorded in ABAgNPs. Presence of phytochemical constituents showed pharmacological importance. Conclusion: It was concluded that green synthesis is an innovative technology in which natural products are conjugated with metallic particles and are used against infectious pathogens. The current research showed the significant use of green nanoparticles against etiological agents.


2017 ◽  
Vol 7 (1) ◽  
pp. 104-112 ◽  
Author(s):  
Alireza Ebrahiminezhad ◽  
Saeed Taghizadeh ◽  
Aydin Berenjian ◽  
Fatemeh Heidaryan Naeini ◽  
Younes Ghasemi

Sign in / Sign up

Export Citation Format

Share Document