Experiment and multiphase CFD simulation of gas-solid flow in a CFB reactor at various operating conditions: Assessing the performance of 2D and 3D simulations

2020 ◽  
Vol 37 (12) ◽  
pp. 2094-2103
Author(s):  
Mukesh Upadhyay ◽  
Myung Won Seo ◽  
Parlikkad Rajan Naren ◽  
Jong-Ho Park ◽  
Thanh Dang Binh Nguyen ◽  
...  
Author(s):  
Giorgia Tagliavini ◽  
Federico Solari ◽  
Roberto Montanari

AbstractThe extrusion of starch-based products has been a matter of interest, especially for the pasta and the snack food production. In recent years, twin-screw extruders for snack food have been studied from both structural and fluid dynamics viewpoints. This project started from the rheological characterization of a starch-based dough (corn 34 wt%, tapioca 32 wt%), comparing viscosity values acquired in laboratory with different theoretical models found in literature. A computational fluid dynamic (CFD) simulation recreating the simple case of a fluid flow between two parallel plates was carried out to validate the former comparison. After the rheological validation was completed, the second phase of this work covered a 3D CFD simulation of the first part of the twin-screw extruder (feeding zone). The objective was to find a suitable model for describing the dough rheological behavior and the operating conditions of a co-rotating intermeshing twin-screw extruder. Once the model would be defined, it would allow to investigate several working conditions and different screws geometries of the machine, predicting the evolution of the product rheological properties.


2021 ◽  
Author(s):  
Ruizi Zhang ◽  
Ian Frigaard

Abstract Many numerical studies have been conducted regarding laminar miscible displacement flow in narrow, vertical, eccentric annuli. For the next decade it is likely that primary cementing flows on the scale of the well will continue to be simulated predominantly with 2D gap-averaged (2DGA) models. However, 3D simulations are less common due to the computational cost. The comparison between 2D and 3D models needs further attention, to understand the main discrepancies and thus help to understand primary cementing flows better. In this paper, comparisons of 3D against 2DGA model results show a range of interesting different phenomena, e.g. static layers, dispersive spikes, and instabilities. The predictions of the 2DGA model are the same as the 3D results to a degree. In particular, they are consistent with each other regarding the evolving process, interface shape, etc. However, the main difference with the 2DGA concentration arises from dispersion on the scale of the annular gap. From the recent research of Renteria and Frigaard (J. Fluid Mech., vol. 905, 2020) [1], a variety of dispersive effects are the main discrepancy between experiments and 2DGA results as well. We give representative examples of these flows in surface casing geometries and suggest methods for improvement of the 2DGA model.


Author(s):  
C. Klein ◽  
S. Reitenbach ◽  
D. Schoenweitz ◽  
F. Wolters

Due to a high degree of complexity and computational effort, overall system simulations of jet engines are typically performed as 0-dimensional thermodynamic performance analysis. Within these simulations and especially in the early cycle design phase, the usage of generic component characteristics is common practice. Of course these characteristics often cannot account for true engine component geometries and operating characteristics which may cause serious deviations between simulated and actual component and overall system performance. This leads to the approach of multi-fidelity simulation, often referred to as zooming, where single components of the thermodynamic cycle model are replaced by higher-order procedures. Hereby the consideration of actual component geometries and performance in an overall system context is enabled and global optimization goals may be considered in the engine design process. The purpose of this study is to present a fully automated approach for the integration of a 3D-CFD component simulation into a thermodynamic overall system simulation. As a use case, a 0D-performance model of the IAE-V2527 engine is combined with a CFD model of the appropriate fan component. The methodology is based on the DLR in-house performance synthesis and preliminary design environment GTlab combined with the DLR in-house CFD solver TRACE. Both, the performance calculation as well as the CFD simulation are part of a fully automated process chain within the GTlab environment. The exchange of boundary conditions between the different fidelity levels is accomplished by operating both simulation procedures on a central data model which is one of the essential parts of GTlab. Furthermore iteration management, progress monitoring as well as error handling are part of the GTlab process control environment. Based on the CFD results comprising fan efficiency, pressure ratio and mass flow, a map scaling methodology as it is commonly used for engine condition monitoring purposes is applied within the performance simulation. Hereby the operating behavior of the CFD fan model can be easily transferred into the overall system simulation which consequently leads to a divergent operating characteristic of the fan module. For this reason, all other engine components will see a shift in their operating conditions even in case of otherwise constant boundary conditions. The described simulation procedure is carried out for characteristic operating conditions of the engine.


2019 ◽  
Vol 343 ◽  
pp. 479-494 ◽  
Author(s):  
Hongbo Shi ◽  
Alexandra Komrakova ◽  
Petr Nikrityuk

2018 ◽  
Author(s):  
Youngmyung Choi ◽  
Benjamin Bouscasse ◽  
Sopheak Seng ◽  
Guillaume Ducrozet ◽  
Lionel Gentaz ◽  
...  

The capability of wave generation and absorption in a viscous flow solver becomes important for achieving realistic simulations in naval and offshore fields. This study presents an efficient generation of nonlinear wave fields in the viscous flow solver by using a nonlinear potential solver called higher-order spectral method (HOS). The advantages of using a fully nonlinear potential solver for the generation of irregular waves are discussed. In particular, it is shown that the proposed method allows the CFD simulation to start at the time and over the space of interest, retrieved from the potential flow solution. The viscous flow solver is based on the open source library OpenFOAM. The potential solvers used to generate waves are the open source solvers HOS-Ocean and HOS-NWT (Numerical Wave Tank). Several simulation parameters in the CFD solver are investigated in the present study. A HOS wrapper program is newly developed to regenerate wave fields in the viscous flow solver. The wrapper program is validated with OpenFOAM for 2D and 3D regular and irregular waves using relaxation zones. Finally, the extreme waves corresponding to the 1000 year return period condition in the Gulf of Mexico are simulated with the viscous flow solver and the wave elevation is compared with the experiments.


2017 ◽  
Vol 23 (3) ◽  
pp. 377-389 ◽  
Author(s):  
Liangchao Li ◽  
Bin Xu

Gas dispersion and floating particles suspension in an agitated vessel were studied numerically by using computational fluid dynamics (CFD). The Eulerian multi-fluid model along with standard k-? turbulence model was used in the simulation. A multiple reference frame (MRF) approach was used to solve the impeller rotation. The velocity field, gas and floating particles holdup distributions in the vessel were first obtained, and then, the effects of operating conditions on gas dispersion and solid suspension were investigated. The simulation results show that velocity field of solid phase and gas phase are quite different in the agitated vessel. Floating particles are easy to accumulate in the center of the surface region and the increasing of superficial gas velocity is in favor of floating particles off-surface suspension. With increasing solids loading, the gas dispersion becomes worse, while relative solid holdup distribution changes little. The limitations of the present modeling are discussed and further research in the future is proposed.


2011 ◽  
Vol 03 (03) ◽  
pp. 246-252 ◽  
Author(s):  
T. A. Mikhail ◽  
Walid A. Aissa ◽  
S. A. Hassanein ◽  
O. Hamdy
Keyword(s):  

2020 ◽  
Vol 45 (9) ◽  
pp. 7587-7597
Author(s):  
Yassine Amadane ◽  
Hamid Mounir ◽  
Abdellatif El Marjani ◽  
Hafsa Bouhrim ◽  
Muhammad Adnan Rafi

2020 ◽  
Vol 165 ◽  
pp. 01006
Author(s):  
Yiquan Guo ◽  
Junying Zhang

In this paper, a collision model between atomized droplets of agglomeration solution and particles is established. On this basis, the effects of flue gas temperature, atomized droplet diameter and other factors on the particle agglomeration process are studied. In addition, the evaporation model of agglomeration solution in the flue of a power plant is established for the coal-fired unit of power plant. Through CFD software, the variation of flow field velocity, temperature and pressure in the flue is simulated to determine whether the chemical agglomeration technology has negative impact on the actual operating conditions of the power plant. The simulation results show that the velocity and pressure of the flow field in the flue have no obvious change after the agglomerating agent is injected. Besides, the temperature drop of about 7°C. The droplets evaporate completely at a distance of 7-8 m after spraying. The evaporation time of droplets is within 1.6 s.


Sign in / Sign up

Export Citation Format

Share Document