scholarly journals A Celebration of History, Scientific Progress, and Pioneers Who Revolutionized Materials Science

JOM ◽  
2022 ◽  
Author(s):  
Olivia D. Underwood Jackson
MRS Bulletin ◽  
2001 ◽  
Vol 26 (7) ◽  
pp. 506-509 ◽  
Author(s):  
Chad A. Mirkin ◽  
John A. Rogers

New methods for micro- and nanofabrication will be essential to scientific progress in many areas of biology, physics, chemistry, and materials science. They will also form enabling technologies for applications ranging from microfluidic devices to micro-optical components to molecular diagnostics to plastic electronics to nanoelectromechanical systems. In many cases, advances will be aided by the highly engineered and spectacularly successful lithographic techniques that are used for microelectronics. These methods have certain drawbacks, however, that will limit their applicability to new devices and fields of study. For example, photolithographies cannot be used with many organic and biological materials due to their chemical incompatibility with typical photoresists and developers; they cannot easily pattern features with dimensions of less than ∼100 nm; they require expensive capital equipment and facilities; they have difficulty forming features on curved, uneven, or rough objects; they can only directly pattern a small set of specialized, photosensitive materials; they cannot reproduce features with complex, three-dimensional (3D) shapes; and they can only pattern small areas in a single step. This situation creates a need for research into alternative patterning methods with capabilities that can complement those of photolithography and other established approaches.


2014 ◽  
Vol 790-791 ◽  
pp. 3-11
Author(s):  
Daniela Voss

The physical sciences research activities implemented by ESA in the framework of the European Life and Physical sciences in Space (ELIPS) programme build up on more than two decades of scientific progress and experience with developing and operating instruments on various space carriers. Research projects are mostly defined and developed in the context of International Topical Teams supported by ESA in coordination with other international partner agencies. Formal project proposals are eventually submitted to regular Announcements of Opportunity, reviewed by international independent peers and their technical feasibility is assessed by technical experts of the facilities considered for the implementation of the space experiments. For most projects, experiments and numerical modelling go hand in hand. As concerning Materials Sciences and the realisation of solidification experiments several platforms and facilities are utilised. This spans from centrifuges to - with increasing experiment duration - the Drop Tower in Bremen, the A-300 aircraft flying parabolic trajectories, sounding rockets and eventually the International Space Station (ISS). Several solidification instruments from typical Bridgman type furnaces to electromagnetic levitation and heating of spherical samples were developed, some of which are already operational in orbit. A dedicated X-ray set-up has also recently been operated on a sounding rocket to enable in-situ observations of the solidification of a metallic alloy. The paper will provide an overview of solidification projects, their objectives and corresponding instruments available for experimentation. It will lay out the objectives and strategy of ESA’s research programme, including the consolidating the international cooperation that prevails in Europe and in the ISS project.


2018 ◽  
Vol 41 ◽  
Author(s):  
Michał Białek

AbstractIf we want psychological science to have a meaningful real-world impact, it has to be trusted by the public. Scientific progress is noisy; accordingly, replications sometimes fail even for true findings. We need to communicate the acceptability of uncertainty to the public and our peers, to prevent psychology from being perceived as having nothing to say about reality.


2018 ◽  
Vol 41 ◽  
Author(s):  
Alexa M. Tullett ◽  
Simine Vazire

AbstractWe contest the “building a wall” analogy of scientific progress. We argue that this analogy unfairly privileges original research (which is perceived as laying bricks and, therefore, constructive) over replication research (which is perceived as testing and removing bricks and, therefore, destructive). We propose an alternative analogy for scientific progress: solving a jigsaw puzzle.


Author(s):  
C. Colliex ◽  
P. Trebbia

The physical foundations for the use of electron energy loss spectroscopy towards analytical purposes, seem now rather well established and have been extensively discussed through recent publications. In this brief review we intend only to mention most recent developments in this field, which became available to our knowledge. We derive also some lines of discussion to define more clearly the limits of this analytical technique in materials science problems.The spectral information carried in both low ( 0<ΔE<100eV ) and high ( >100eV ) energy regions of the loss spectrum, is capable to provide quantitative results. Spectrometers have therefore been designed to work with all kinds of electron microscopes and to cover large energy ranges for the detection of inelastically scattered electrons (for instance the L-edge of molybdenum at 2500eV has been measured by van Zuylen with primary electrons of 80 kV). It is rather easy to fix a post-specimen magnetic optics on a STEM, but Crewe has recently underlined that great care should be devoted to optimize the collecting power and the energy resolution of the whole system.


Author(s):  
Hannes Lichte ◽  
Edgar Voelkl

The object wave o(x,y) = a(x,y)exp(iφ(x,y)) at the exit face of the specimen is described by two real functions, i.e. amplitude a(x,y) and phase φ(x,y). In stead of o(x,y), however, in conventional transmission electron microscopy one records only the real intensity I(x,y) of the image wave b(x,y) loosing the image phase. In addition, referred to the object wave, b(x,y) is heavily distorted by the aberrations of the microscope giving rise to loss of resolution. Dealing with strong objects, a unique interpretation of the micrograph in terms of amplitude and phase of the object is not possible. According to Gabor, holography helps in that it records the image wave completely by both amplitude and phase. Subsequently, by means of a numerical reconstruction procedure, b(x,y) is deconvoluted from aberrations to retrieve o(x,y). Likewise, the Fourier spectrum of the object wave is at hand. Without the restrictions sketched above, the investigation of the object can be performed by different reconstruction procedures on one hologram. The holograms were taken by means of a Philips EM420-FEG with an electron biprism at 100 kV.


Author(s):  
J.C.H. Spence ◽  
J. Mayer

The Zeiss 912 is a new fully digital, side-entry, 120 Kv TEM/STEM instrument for materials science, fitted with an omega magnetic imaging energy filter. Pumping is by turbopump and ion pump. The magnetic imaging filter allows energy-filtered images or diffraction patterns to be recorded without scanning using efficient parallel (area) detection. The energy loss intensity distribution may also be displayed on the screen, and recorded by scanning it over the PMT supplied. If a CCD camera is fitted and suitable new software developed, “parallel ELS” recording results. For large fields of view, filtered images can be recorded much more efficiently than by Scanning Reflection Electron Microscopy, and the large background of inelastic scattering removed. We have therefore evaluated the 912 for REM and RHEED applications. Causes of streaking and resonance in RHEED patterns are being studied, and a more quantitative analysis of CBRED patterns may be possible. Dark field band-gap REM imaging of surface states may also be possible.


Author(s):  
Robert M. Glaeser ◽  
Bing K. Jap

The dynamical scattering effect, which can be described as the failure of the first Born approximation, is perhaps the most important factor that has prevented the widespread use of electron diffraction intensities for crystallographic structure determination. It would seem to be quite certain that dynamical effects will also interfere with structure analysis based upon electron microscope image data, whenever the dynamical effect seriously perturbs the diffracted wave. While it is normally taken for granted that the dynamical effect must be taken into consideration in materials science applications of electron microscopy, very little attention has been given to this problem in the biological sciences.


Author(s):  
M. Rühle ◽  
J. Mayer ◽  
J.C.H. Spence ◽  
J. Bihr ◽  
W. Probst ◽  
...  

A new Zeiss TEM with an imaging Omega filter is a fully digitized, side-entry, 120 kV TEM/STEM instrument for materials science. The machine possesses an Omega magnetic imaging energy filter (see Fig. 1) placed between the third and fourth projector lens. Lanio designed the filter and a prototype was built at the Fritz-Haber-Institut in Berlin, Germany. The imaging magnetic filter allows energy-filtered images or diffraction patterns to be recorded without scanning using efficient area detection. The energy dispersion at the exit slit (Fig. 1) results in ∼ 1.5 μm/eV which allows imaging with energy windows of ≤ 10 eV. The smallest probe size of the microscope is 1.6 nm and the Koehler illumination system is used for the first time in a TEM. Serial recording of EELS spectra with a resolution < 1 eV is possible. The digital control allows X,Y,Z coordinates and tilt settings to be stored and later recalled.


Author(s):  
Vinayak P. Dravid ◽  
M.R. Notis ◽  
C.E. Lyman

The concept of interfacial width is often invoked in many materials science phenomena which relate to the structure and properties of internal interfaces. The numerical value of interface width is an important input parameter in diffusion equations, sintering theories as well as in many electronic devices/processes. Most often, however, this value is guessed rather than determined or even estimated. In this paper we present a method of determining the effective structural and electronic- structural width of interphase interfaces using low- and core loss fine structure effects in EELS spectra.The specimens used in the study were directionally solidified eutectics (DSEs) in the system; NiO-ZrO2(CaO), NiO-Y2O3 and MnO-ZrO2(ss). EELS experiments were carried out using a VG HB-501 FE STEM and a Hitachi HF-2000 FE TEM.


Sign in / Sign up

Export Citation Format

Share Document