Amphiphilic marine coating systems of self-stratified PDMS-PEG surfaces with an epoxy-polyurethane matrix

Author(s):  
AliReza Rahimi ◽  
Morgan Murphy ◽  
Kinza Faiyaz ◽  
Shane J. Stafslien ◽  
Lyndsi Vanderwal ◽  
...  
Keyword(s):  
2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Yuyan Wang ◽  
Xin Huang ◽  
Xinxing Zhang

AbstractSelf-healing materials integrated with excellent mechanical strength and simultaneously high healing efficiency would be of great use in many fields, however their fabrication has been proven extremely challenging. Here, inspired by biological cartilage, we present an ultrarobust self-healing material by incorporating high density noncovalent bonds at the interfaces between the dentritic tannic acid-modified tungsten disulfide nanosheets and polyurethane matrix to collectively produce a strong interfacial interaction. The resultant nanocomposite material with interwoven network shows excellent tensile strength (52.3 MPa), high toughness (282.7 MJ m‒3, which is 1.6 times higher than spider silk and 9.4 times higher than metallic aluminum), high stretchability (1020.8%) and excellent healing efficiency (80–100%), which overturns the previous understanding of traditional noncovalent bonding self-healing materials where high mechanical robustness and healing ability are mutually exclusive. Moreover, the interfacical supramolecular crosslinking structure enables the functional-healing ability of the resultant flexible smart actuation devices. This work opens an avenue toward the development of ultrarobust self-healing materials for various flexible functional devices.


Author(s):  
Cintia Meiorin ◽  
Selina L. Scherzer ◽  
Verónica Mucci ◽  
Daniel G. Actis ◽  
Pedro Mendoza Zelis ◽  
...  

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Lixia Li ◽  
Meng Wang ◽  
Xiandong Wu ◽  
Wenping Yi ◽  
Qiang Xiao

AbstractNanocomposite modification has attracted much attention in improving properties of bio-based polymer coating material for coated fertilizer. Herein two comparable polyhedral oligomeric silsesquioxanes (POSS), with eight poly(ethylene glycol) (PEG) and octaphenyl groups attached to the cage, respectively, were successfully incorporated into thin castor oil-based polyurethane coatings via in-situ polymerization on the urea surface. The nanostructure coatings are environmentally friendly, easy to prepare, and property-tunable. The results show that the vertex group of POSS had a pronounced influence on dispersion level and interaction between polyurethane and POSS that well-tuned the release pattern and period of coated urea, even at the coating rate as low as of 2 wt%. The liquid POSS with long and flexible PEG groups had better compatibility and dispersibility in polyurethane matrix than the solid POSS with rigid octaphenyl groups, as evidenced by SEM/EDS. The unique properties were resulted from the different extents of physical crosslinkings. This modification of bio-based polyurethane coating with POSS provided an alternative method of regulating and controlling the properties of coated fertilizer.


2013 ◽  
Vol 856 ◽  
pp. 309-313 ◽  
Author(s):  
Anupama Kaushik ◽  
Alka Garg

In this study the castor oil based polyurethane (PU) nanocomposites were prepared by dispersing the cellulose nanocrystallites (CNC) isolated from cotton linters. CNC was dispersed in PU matrix using ultrasonicator coupled with high shear homogenizer. The filler loading was varied from 0-10% of the total weight of the mixture. The PU/CNC nanocomposites were characterized by SEM, XRD, FTIR, mechanical and barrier properties. SEM confirmed homogeneous dispersion of CNCs in polyurethane matrix with small agglomerates at certain places. Improvement in mechanical properties was observed as compared to neat PU. Diffusivity and permeability of the nanocomposites was reduced at higher loadings of CNC.


2011 ◽  
Vol 84 (5) ◽  
pp. 552-561 ◽  
Author(s):  
Angelo Alberti ◽  
Mylène Campredon ◽  
Renaud Demadrille

2005 ◽  
Vol 475-479 ◽  
pp. 1001-1004
Author(s):  
Ninglin Zhou ◽  
Xiao Xian Xia ◽  
Li Li ◽  
Shao Hua Wei ◽  
Jian Shen

A novel exfoliated polyurethane (PU)/clay Interpenetrating Polymer Networks (IPNs) nanocomposite has been synthesized with polyurethane and organoclay. MTPAC is used as swelling agent to treat Na-montmorillonite for forming organoclay. The results indicate that there is very good compatibility between organoclay and PU. Nanoscale silicate dispersion was analyzed by XRD. The mechanical properties of the nanocomposites have been measured by tensile testing machine. The nanocomposites show obviously improved physical and mechanical properties when compared with the pure polymer. Additionally, PU /MTPAC- clay shows lower water absorption properties than pure PU do. In addition, the reinforcing and intercalating mechanism of silicate layers in polyurethane matrix are discussed.


RSC Advances ◽  
2021 ◽  
Vol 11 (43) ◽  
pp. 26635-26643
Author(s):  
Amna Murtaza ◽  
Maliha Uroos ◽  
Misbah Sultan ◽  
Rabia Muazzam ◽  
Sadia Naz

This work describes the synthesis of gold nanoparticles (AuNPs) and their subsequent stabilization using a water-borne polyurethane matrix of micro-particles (Au/PU).


1988 ◽  
Vol 8 (2) ◽  
pp. 157-165 ◽  
Author(s):  
Amnon Sintov ◽  
William Scott ◽  
Macdonald Dick ◽  
Robert J. Levy

RSC Advances ◽  
2021 ◽  
Vol 11 (61) ◽  
pp. 38374-38382
Author(s):  
Bing Wang ◽  
Haifeng Ji ◽  
Xiaojie Zhang ◽  
Xiongwei Qu

The PEI-grafted boron nitride nanosheets were successfully prepared via sand-milling process, which were doped into thermoplastic polyurethane matrix for better in-plane thermal conductivity while maintaining insulation properties.


e-Polymers ◽  
2010 ◽  
Vol 10 (1) ◽  
Author(s):  
Yanyan Wei ◽  
Chengzhong Zong ◽  
Fufang Wang

AbstractVinyl polymer/polyurethane hybrid latex particles with various compositions were successfully prepared via emulsion polymerization of vinyl monomer in the presence of self-emulsified polyurethane dispersion without using any surfactant. Studies were carried out on polymerization kinetics, characterization of the hybrid particles and the physical properties of nano-sized vinyl polymer particle/thermoplastic polyurethane blends. It was found that the maximum content of vinyl polymer in polyurethane hybrid particles was up to 80 percent and all of the vinyl polymer/polyurethane hybrid particles were less than 120 nm. Infrared spectroscopy, thermal gravimetric analysis and differential scanning calorimetry analysis indicated the influence of vinyl polymer on the polyurethane hybrid particles. With the polyurethane shells outside and, therefore, good compatibility with polyurethane matrix, the hybrid particles can be easily blended into polyurethane matrix. Some unusual changes of dynamic mechanical properties in the low temperature region were found in the blends of hybrid particles and thermoplastic polyurethane. With the addition of only 3%, the mechanical properties of these blends did not show a significant change. This study provided a new method to prepare hybrid particles in the absence of surfactant and made an attempt on application of vinyl polymer/polyurethane hybrid particles in the blending modification


Sign in / Sign up

Export Citation Format

Share Document