scholarly journals Human Induced Pluripotent Stem Cell-Derived Cardiomyocytes as a Model for Heart Development and Congenital Heart Disease

2015 ◽  
Vol 11 (5) ◽  
pp. 710-727 ◽  
Author(s):  
Michelle J. Doyle ◽  
Jamie L. Lohr ◽  
Christopher S. Chapman ◽  
Naoko Koyano-Nakagawa ◽  
Mary G. Garry ◽  
...  
2020 ◽  
Vol 127 (Suppl_1) ◽  
Author(s):  
Sherri M Biendarra-tiegs ◽  
Sergey Yechikov ◽  
Laura Houshmand ◽  
R. E Gonzalez ◽  
Zhi Hong Lu ◽  
...  

Atrial fibrillation (AF) poses a notable healthcare burden due to a high incidence in the increasing population over age 65 and limitations of current treatment approaches. One challenge to effectively treat AF is patient-to-patient heterogeneity in the underlying mechanisms of disease. Therefore, a better understanding of AF pathogenesis and more personalized approaches to therapy could reduce risk of side effects and improve therapeutic efficacy. Genome wide association studies (GWAS) have revealed several candidate genes for AF including TBX5 , which encodes for a transcription factor involved in heart development. While work in animal models suggests that loss of TBX5 promotes atrial arrythmias, experimental evidence in human cells is lacking. We created an in vitro model of human atrial conduction using day 60+ induced pluripotent stem cell-derived atrial-like cardiomyocytes (iPSC-aCMs) differentiated from three established healthy iPSC lines. Over 90% atrial-like purity (out of 350+ alpha-actinin positive cardiomyocytes) could be achieved based on MLC2v-/MLC2a+ immunofluorescent staining. TBX5 knockdown via esiRNA resulted in downregulation of genes related to conduction velocity ( GJA5 and SCN5A ), consistent with an enhanced risk of AF. Single cell optical electrophysiology demonstrated slightly reduced action potential amplitude and upstroke velocity for TBX5 knockdown cells versus GFP esiRNA controls, suggesting a functional effect of SCN5A downregulation. Additionally, microelectrode array studies have revealed a trend towards slowed conduction velocity with TBX5 knockdown compared to GFP esiRNA controls (13.1±3.0 cm/s vs 17.0±3.8 cm/s respectively). By further investigating the functional effects of modulating transcription factors such as TBX5 in iPSC-aCMs, our results provide enhanced insight into the regulation of atrial conduction and identify potential AF-related pathways for therapeutic targeting.


Cells ◽  
2021 ◽  
Vol 10 (12) ◽  
pp. 3483
Author(s):  
Mohamed M. Bekhite ◽  
P. Christian Schulze

A comprehensive understanding of the pathophysiology and cellular responses to drugs in human heart disease is limited by species differences between humans and experimental animals. In addition, isolation of human cardiomyocytes (CMs) is complicated because cells obtained by biopsy do not proliferate to provide sufficient numbers of cells for preclinical studies in vitro. Interestingly, the discovery of human-induced pluripotent stem cell (hiPSC) has opened up the possibility of generating and studying heart disease in a culture dish. The combination of reprogramming and genome editing technologies to generate a broad spectrum of human heart diseases in vitro offers a great opportunity to elucidate gene function and mechanisms. However, to exploit the potential applications of hiPSC-derived-CMs for drug testing and studying adult-onset cardiac disease, a full functional characterization of maturation and metabolic traits is required. In this review, we focus on methods to reprogram somatic cells into hiPSC and the solutions for overcome immaturity of the hiPSC-derived-CMs to mimic the structure and physiological properties of the adult human CMs to accurately model disease and test drug safety. Finally, we discuss how to improve the culture, differentiation, and purification of CMs to obtain sufficient numbers of desired types of hiPSC-derived-CMs for disease modeling and drug development platform.


2022 ◽  
Author(s):  
Martin Broberg ◽  
Minna Ampuja ◽  
Samuel Jones ◽  
Tiina Ojala ◽  
Otto Rahkonen ◽  
...  

AbstractCongenital heart defects (CHD) are structural defects of the heart affecting approximately 1% of newborns. CHDs exhibit a complex inheritance pattern. While genetic factors are known to play an important role in the development of CHD, relatively few variants have been discovered so far and very few genome-wide association studies (GWAS) have been conducted. We performed a GWAS of general CHD and five CHD subgroups in FinnGen followed by functional fine-mapping through eQTL analysis in the GTEx database, and target validation in human induced pluripotent stem cell - derived cardiomyocytes (hiPS-CM) from CHD patients. We discovered that the MYL4-KPNB1 locus (rs11570508, beta = 0.24, P = 1.2×10−11) was associated with the general CHD group. An additional four variants were significantly associated with the different CHD subgroups. Two of these, rs1342740627 associated with left ventricular outflow tract obstruction defects and rs1293973611 associated with septal defects, were Finnish population enriched. The variant rs11570508 associated with the expression of MYL4 (normalized expression score (NES) = 0.1, P = 0.0017, in the atrial appendage of the heart) and KPNB1 (NES = -0.037, P = 0.039, in the left ventricle of the heart). Furthermore, lower expression levels of both genes were observed in human induced pluripotent stem cell derived cardiomyocytes (hiPSC-CM) from CHD patients compared to healthy controls. Together, the results demonstrate KPNB1 and MYL4 as in a potential genetic risk loci associated with the development of CHD.


2018 ◽  
Vol 206 (1-2) ◽  
pp. 82-94 ◽  
Author(s):  
Aaron J. Rogers ◽  
Ramaswamy Kannappan ◽  
Hadil Abukhalifeh ◽  
Mohammed Ghazal ◽  
Jessica M. Miller ◽  
...  

Human induced pluripotent stem cell (hiPSC)-derived cardio­myocytes (hiPSC-CMs) hold great promise for cardiovascular disease modeling and regenerative medicine. However, these cells are both structurally and functionally ­immature, primarily due to their differentiation into cardiomyocytes occurring under static culture which only reproduces biomolecular cues and ignores the dynamic hemo­dynamic cues that shape early and late heart development during cardiogenesis. To evaluate the effects of hemodynamic stimuli on hiPSC-CM maturation, we used the biomimetic cardiac tissue model to reproduce the hemodynamics and pressure/volume changes associated with heart development. Following 7 days of gradually increasing stimulation, we show that hemodynamic loading results in (a) enhanced alignment of the cells and extracellular matrix, (b) significant increases in genes associated with physiological hypertrophy, (c) noticeable changes in sarcomeric organization and potential changes to cellular metabolism, and (d) a significant increase in fractional shortening, suggestive of a positive force frequency response. These findings suggest that culture of hiPSC-CMs under conditions that accurately reproduce hemodynamic cues results in structural orga­nization and molecular signaling consistent with organ growth and functional maturation.


2018 ◽  
Author(s):  
Fantuzzi Federica ◽  
Toivonen Sanna ◽  
Schiavo Andrea Alex ◽  
Pachera Nathalie ◽  
Rajaei Bahareh ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document