scholarly journals RNA Sequencing Analysis of Induced Pluripotent Stem Cell-Derived Cardiomyocytes From Congenital Heart Disease Patients

2020 ◽  
Vol 126 (7) ◽  
pp. 923-925
Author(s):  
Tomoya Kitani ◽  
Lei Tian ◽  
Tiejun Zhang ◽  
Ilanit Itzhaki ◽  
Joe Z. Zhang ◽  
...  
2015 ◽  
Vol 11 (5) ◽  
pp. 710-727 ◽  
Author(s):  
Michelle J. Doyle ◽  
Jamie L. Lohr ◽  
Christopher S. Chapman ◽  
Naoko Koyano-Nakagawa ◽  
Mary G. Garry ◽  
...  

Author(s):  
Yin‐Yu Lam ◽  
Wendy Keung ◽  
Chun‐Ho Chan ◽  
Lin Geng ◽  
Nicodemus Wong ◽  
...  

Background To understand the intrinsic cardiac developmental and functional abnormalities in pulmonary atresia with intact ventricular septum (PAIVS) free from effects secondary to anatomic defects, we performed and compared single‐cell transcriptomic and phenotypic analyses of patient‐ and healthy subject–derived human‐induced pluripotent stem cell–derived cardiomyocytes (hiPSC‐CMs) and engineered tissue models. Methods and Results We derived hiPSC lines from 3 patients with PAIVS and 3 healthy subjects and differentiated them into hiPSC‐CMs, which were then bioengineered into the human cardiac anisotropic sheet and human cardiac tissue strip custom‐designed for electrophysiological and contractile assessments, respectively. Single‐cell RNA sequencing (scRNA‐seq) of hiPSC‐CMs, human cardiac anisotropic sheet, and human cardiac tissue strip was performed to examine the transcriptomic basis for any phenotypic abnormalities using pseudotime and differential expression analyses. Through pseudotime analysis, we demonstrated that bioengineered tissue constructs provide pro‐maturational cues to hiPSC‐CMs, although the maturation and development were attenuated in PAIVS hiPSC‐CMs. Furthermore, reduced contractility and prolonged contractile kinetics were observed with PAIVS human cardiac tissue strips. Consistently, single‐cell RNA sequencing of PAIVS human cardiac tissue strips and hiPSC‐CMs exhibited diminished expression of cardiac contractile apparatus genes. By contrast, electrophysiological aberrancies were absent in PAIVS human cardiac anisotropic sheets. Conclusions Our findings were the first to reveal intrinsic abnormalities of cardiomyocyte development and function in PAIVS free from secondary effects. We conclude that hiPSC‐derived engineered tissues offer a unique method for studying primary cardiac abnormalities and uncovering pathogenic mechanisms that underlie sporadic congenital heart diseases.


Cells ◽  
2021 ◽  
Vol 10 (12) ◽  
pp. 3483
Author(s):  
Mohamed M. Bekhite ◽  
P. Christian Schulze

A comprehensive understanding of the pathophysiology and cellular responses to drugs in human heart disease is limited by species differences between humans and experimental animals. In addition, isolation of human cardiomyocytes (CMs) is complicated because cells obtained by biopsy do not proliferate to provide sufficient numbers of cells for preclinical studies in vitro. Interestingly, the discovery of human-induced pluripotent stem cell (hiPSC) has opened up the possibility of generating and studying heart disease in a culture dish. The combination of reprogramming and genome editing technologies to generate a broad spectrum of human heart diseases in vitro offers a great opportunity to elucidate gene function and mechanisms. However, to exploit the potential applications of hiPSC-derived-CMs for drug testing and studying adult-onset cardiac disease, a full functional characterization of maturation and metabolic traits is required. In this review, we focus on methods to reprogram somatic cells into hiPSC and the solutions for overcome immaturity of the hiPSC-derived-CMs to mimic the structure and physiological properties of the adult human CMs to accurately model disease and test drug safety. Finally, we discuss how to improve the culture, differentiation, and purification of CMs to obtain sufficient numbers of desired types of hiPSC-derived-CMs for disease modeling and drug development platform.


2022 ◽  
Author(s):  
Martin Broberg ◽  
Minna Ampuja ◽  
Samuel Jones ◽  
Tiina Ojala ◽  
Otto Rahkonen ◽  
...  

AbstractCongenital heart defects (CHD) are structural defects of the heart affecting approximately 1% of newborns. CHDs exhibit a complex inheritance pattern. While genetic factors are known to play an important role in the development of CHD, relatively few variants have been discovered so far and very few genome-wide association studies (GWAS) have been conducted. We performed a GWAS of general CHD and five CHD subgroups in FinnGen followed by functional fine-mapping through eQTL analysis in the GTEx database, and target validation in human induced pluripotent stem cell - derived cardiomyocytes (hiPS-CM) from CHD patients. We discovered that the MYL4-KPNB1 locus (rs11570508, beta = 0.24, P = 1.2×10−11) was associated with the general CHD group. An additional four variants were significantly associated with the different CHD subgroups. Two of these, rs1342740627 associated with left ventricular outflow tract obstruction defects and rs1293973611 associated with septal defects, were Finnish population enriched. The variant rs11570508 associated with the expression of MYL4 (normalized expression score (NES) = 0.1, P = 0.0017, in the atrial appendage of the heart) and KPNB1 (NES = -0.037, P = 0.039, in the left ventricle of the heart). Furthermore, lower expression levels of both genes were observed in human induced pluripotent stem cell derived cardiomyocytes (hiPSC-CM) from CHD patients compared to healthy controls. Together, the results demonstrate KPNB1 and MYL4 as in a potential genetic risk loci associated with the development of CHD.


2018 ◽  
Author(s):  
Fantuzzi Federica ◽  
Toivonen Sanna ◽  
Schiavo Andrea Alex ◽  
Pachera Nathalie ◽  
Rajaei Bahareh ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document