laterality defects
Recently Published Documents


TOTAL DOCUMENTS

58
(FIVE YEARS 21)

H-INDEX

15
(FIVE YEARS 3)

2021 ◽  
Vol 10 (21) ◽  
pp. 5102
Author(s):  
Mohammed T. Alsamri ◽  
Amnah Alabdouli ◽  
Durdana Iram ◽  
Alia M. Alkalbani ◽  
Ayesha S. Almarzooqi ◽  
...  

Primary ciliary dyskinesia (PCD) is a poorly understood disorder. It is primarily autosomal recessive and is prevalent in tribal communities of the United Arab Emirates due to consanguineous marriages. This retrospective study aimed to assess the pathogenicity of the genetic variants of PCD in indigenous patients with significant clinical respiratory problems. Pathogenicity scores of variants obtained from the chart review were consolidated using the Ensembl Variant Effect Predictor. The multidimensional dataset of scores was clustered into three groups based on their pathogenicity. Sequence alignment and the Jensen–Shannon Divergence (JSD) were generated to evaluate the amino acid conservation at the site of the variation. One-hundred and twelve variants of 28 genes linked to PCD were identified in 66 patients. Twenty-two variants were double heterozygous, two triple heterozygous, and seven homozygous. Of the thirteen novel variants, two, c.11839 + 1G > A in dynein, axonemal, heavy chain 11 (DNAH11) and p.Lys92Trpfs in dynein, axonemal, intermediate chain 1 (DNAI1) were associated with dextrocardia with situs inversus, and one, p.Gly21Val in coiled-coil domain-containing protein 40 (CCDC40), with absent inner dynein arms. Homozygous C1orf127:p.Arg113Ter (rs558323413) was also associated with laterality defects in two related patients. The majority of variants were missense involving conserved residues with a median JSD score of 0.747. Homology models of two deleterious variants in the stalk of DNAH11, p.Gly3102Asp and p.Leu3127Arg, revealed structural importance of the conserved glycine and leucine. These results define potentially damaging PCD variants in the region. Future studies, however, are needed to fully comprehend the genetic underpinnings of PCD.


2021 ◽  
Author(s):  
Benjamin Rothé ◽  
Simon Fortier ◽  
Daniel B. Constam

SUMMARYPerturbations in biomolecular condensates that form by phase-transitioning are linked to a growing number of degenerative diseases. For example, mutations in a multivalent interaction network of the Ankyrin (ANK) and sterile alpha motif (SAM) domain-containing ANKS3 and ANKS6 proteins with the RNA-binding protein Bicaudal-C1 (Bicc1) associate with laterality defects and chronic kidney diseases known as ciliopathies. However, insights into the mechanisms that control RNA condensation in ribonucleoprotein particles (RNPs) are scarce. Here, we asked whether heterooligomerization modulates Bicc1 binding to RNA. Reconstitution assays in vitro and live imaging in vivo show that a K homology (KH) repeat of Bicc1 self-interacts and synergizes with SAM domain self-polymerization independently of RNA to concentrate bound mRNAs in gel-like granules that can split or fuse with each other. Importantly, emulsification of Bicc1 by ANKS3 inhibited binding to target mRNAs, whereas condensation by ANKS6 co-recruitment increased it by liberating the KH domains from ANKS3. Our findings suggest that the perturbation of Bicc1-Anks3-Anks6 RNP dynamics is a likely cause of associated ciliopathies.


2021 ◽  
Vol 8 ◽  
Author(s):  
Rabab Said Alsafwani ◽  
Khalidah K. Nasser ◽  
Thoraia Shinawi ◽  
Babajan Banaganapalli ◽  
Hanan Abdelhalim ElSokary ◽  
...  

Laterality defects (LDs) or asymmetrically positioned organs are a group of rare developmental disorders caused by environmental and/or genetic factors. However, the exact molecular pathophysiology of LD is not yet fully characterised. In this context, studying Arab population presents an ideal opportunity to discover the novel molecular basis of diseases owing to the high rate of consanguinity and genetic disorders. Therefore, in the present study, we studied the molecular basis of LD in Arab patients, using next-generation sequencing method. We discovered an extremely rare novel missense variant in MYO1D gene (Pro765Ser) presenting with visceral heterotaxy and left isomerism with polysplenia syndrome. The proband in this index family has inherited this homozygous variant from her heterozygous parents following the autosomal recessive pattern. This is the first report to show MYO1D genetic variant causing left–right axis defects in humans, besides previous known evidence from zebrafish, frog and Drosophila models. Moreover, our multilevel bioinformatics-based structural (protein variant structural modelling, divergence, and stability) analysis has suggested that Ser765 causes minor structural drifts and stability changes, potentially affecting the biophysical and functional properties of MYO1D protein like calmodulin binding and microfilament motor activities. Functional bioinformatics analysis has shown that MYO1D is ubiquitously expressed across several human tissues and is reported to induce severe phenotypes in knockout mouse models. In conclusion, our findings show the expanded genetic spectrum of LD, which could potentially pave way for the novel drug target identification and development of personalised medicine for high-risk families.


Author(s):  
Hong T. Lin ◽  
Anita Gupta ◽  
Kevin E. Bove ◽  
Sara Szabo ◽  
Fang Xu ◽  
...  

AbstractThe dynein axonemal heavy chain 5 gene codes for a subunit of axonemal dynein necessary for ciliary motor function. Though research has elucidated the consequences of some variants in this gene, it is still unclear whether many variants in the DNAH5 locus are benign or pathogenic due to the rarity of primary ciliary dyskinesia (PCD, of which Kartagener's syndrome is a subset). Here, we introduce the case of an infant boy presenting with the classical findings of PCD along with visceral heterotaxia and neonatal cholestasis. Genetic testing indicated that the patient is a compound heterozygote with a pathogenic c.8498G > A (known as pathogenic) on the maternally derived allele and two variants of uncertain significance, c.1206T > A and c.7800T > G, on the paternally derived allele. As PCD is autosomal recessive, we conclude that one, or both, of these paternally derived variants are pathogenic. To our knowledge, this is the first time that the clinical implications of c.1206T > A (p.Asn402Lys) and c.7800T > G (p.Ile2600Met) are documented. Furthermore, we use this case as an example to recommend clinicians to assess for PCD and laterality defects when presented with severe infantile cholestasis. While the association of cholestasis with PCD is relatively uncommon, PCD is a risk factor for increased prevalence of biliary atresia and infections, both of which are known causes of cholestasis in early infancy.


2021 ◽  
Vol 22 (15) ◽  
pp. 8272
Author(s):  
Steven K Brennan ◽  
Thomas W Ferkol ◽  
Stephanie D Davis

Primary ciliary dyskinesia (PCD) is a rare inherited condition affecting motile cilia and leading to organ laterality defects, recurrent sino-pulmonary infections, bronchiectasis, and severe lung disease. Research over the past twenty years has revealed variability in clinical presentations, ranging from mild to more severe phenotypes. Genotype and phenotype relationships have emerged. The increasing availability of genetic panels for PCD continue to redefine these genotype-phenotype relationships and reveal milder forms of disease that had previously gone unrecognized.


Cells ◽  
2021 ◽  
Vol 10 (8) ◽  
pp. 1885
Author(s):  
Dinu Antony ◽  
Han G. Brunner ◽  
Miriam Schmidts

Although ubiquitously present, the relevance of cilia for vertebrate development and health has long been underrated. However, the aberration or dysfunction of ciliary structures or components results in a large heterogeneous group of disorders in mammals, termed ciliopathies. The majority of human ciliopathy cases are caused by malfunction of the ciliary dynein motor activity, powering retrograde intraflagellar transport (enabled by the cytoplasmic dynein-2 complex) or axonemal movement (axonemal dynein complexes). Despite a partially shared evolutionary developmental path and shared ciliary localization, the cytoplasmic dynein-2 and axonemal dynein functions are markedly different: while cytoplasmic dynein-2 complex dysfunction results in an ultra-rare syndromal skeleto-renal phenotype with a high lethality, axonemal dynein dysfunction is associated with a motile cilia dysfunction disorder, primary ciliary dyskinesia (PCD) or Kartagener syndrome, causing recurrent airway infection, degenerative lung disease, laterality defects, and infertility. In this review, we provide an overview of ciliary dynein complex compositions, their functions, clinical disease hallmarks of ciliary dynein disorders, presumed underlying pathomechanisms, and novel developments in the field.


Author(s):  
Huifang Hu ◽  
Weicheng Chen ◽  
Wei Sheng ◽  
Guoying Huang

AbstractAs a rare disease with genetic pathogenesis, observational study about familial CHD recurrence risk on CHD patients with laterality defects is lacking. This study aimed to investigate familial recurrence among families of patients with CHD and laterality defects, and compare them with CHD patients without laterality defects. A total of 184 patients with CHD and laterality defects treated in Cardiovascular Center, Children’s Hospital of Fudan University were observed from 2008 to 2019. A detailed family history was documented by trained staff using questionnaires, and information about the subtypes of CHD and laterality defects was also collected. In addition, positive family history information, including all three degrees relatives and all affected family members, was reconfirmed by trained medical staff through face-to-face interviews, telephone interviews, and letter return visits. Of the 184 included patients, 30 had at least one family member (from among three linear generations and distant relatives) with CHD. The familial recurrence rate of CHD in our cohort was 16.3% (30/184), which was higher than the 3.3% (67/2024) of patients with CHD without laterality defects. This result shows that the recurrence rate among the first-, second-, and third-degree relatives was 11.7% (11/94), 1.5% (3/204), and 3.1% (6/91) and that the recurrence rate among siblings (21.4%, 9/42) was higher than that among parents (3.8%, 2/52). The familial recurrence risk of CHD among patients with CHD and laterality defects is high, which is consistent with the previous study that reported a high familial recurrence of heterotaxy of 10%. First-degree relatives have a higher recurrence rate than second- and third-degree relatives, especially siblings. These findings have important significance for prenatal screening, intervention, and genetic counseling in the Chinese population, but may not be generalizable to other populations that may have different rates of familial and sporadic cases.


2021 ◽  
pp. 1-10
Author(s):  
Md. Ashraf Uddin Chowdhury ◽  
Ahmed A. Raslan ◽  
Eunhye Lee ◽  
Juneyong Eum ◽  
Byung Joon Hwang ◽  
...  

Diagnostics ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 281
Author(s):  
Wilfredo De Jesús-Rojas ◽  
Dalilah Reyes-De Jesús ◽  
Ricardo A. Mosquera

Primary ciliary dyskinesia (PCD) is a rare, heterogeneous ciliopathy resulting in chronic oto-sino-pulmonary disease, bronchiectasis, newborn respiratory distress, and laterality defects. PCD diagnosis can be achieved by following diagnostic algorithms that include electron microscopy, genetics, and ancillary testing. Genetic mutations in more than 45 genes, including RSPH4A, can lead to PCD. RSPH4A mutations located on chromosome six, affect radial spokes and results in central complex apparatus abnormalities. The RSPH4A [c.921 + 3_6delAAGT] founder mutation was described as one cause of PCD without laterality defects in Puerto Rico. Additionally, there are further diagnostic challenges present in the Puerto Rican population to diagnose PCD. We describe the demographics, clinical features, and RSPH4A genetic variants in 13 patients with clinical PCD affecting 11 Puerto Ricans from unrelated families.


Cell Reports ◽  
2021 ◽  
Vol 34 (2) ◽  
pp. 108606
Author(s):  
Roberto Moreno-Ayala ◽  
Pedro Olivares-Chauvet ◽  
Ronny Schäfer ◽  
Jan Philipp Junker

Sign in / Sign up

Export Citation Format

Share Document