Treadmill exercise promotes interleukin 15 expression in skeletal muscle and interleukin 15 receptor alpha expression in adipose tissue of high-fat diet rats

Endocrine ◽  
2012 ◽  
Vol 43 (3) ◽  
pp. 579-585 ◽  
Author(s):  
Hongtao Yang ◽  
Jinrui Chang ◽  
Wenjia Chen ◽  
Lei Zhao ◽  
Bo Qu ◽  
...  
2013 ◽  
Vol 305 (5) ◽  
pp. R522-R533 ◽  
Author(s):  
Jonathan M. Peterson ◽  
Zhikui Wei ◽  
Marcus M. Seldin ◽  
Mardi S. Byerly ◽  
Susan Aja ◽  
...  

CTRP9 is a secreted multimeric protein of the C1q family and the closest paralog of the insulin-sensitizing adipokine, adiponectin. The metabolic function of this adipose tissue-derived plasma protein remains largely unknown. Here, we show that the circulating levels of CTRP9 are downregulated in diet-induced obese mice and upregulated upon refeeding. Overexpressing CTRP9 resulted in lean mice that dramatically resisted weight gain induced by a high-fat diet, largely through decreased food intake and increased basal metabolism. Enhanced fat oxidation in CTRP9 transgenic mice resulted from increases in skeletal muscle mitochondrial content, expression of enzymes involved in fatty acid oxidation (LCAD and MCAD), and chronic AMPK activation. Hepatic and skeletal muscle triglyceride levels were substantially decreased in transgenic mice. Consequently, CTRP9 transgenic mice had a greatly improved metabolic profile with markedly reduced fasting insulin and glucose levels. The high-fat diet-induced obesity, insulin resistance, and hepatic steatosis observed in wild-type mice were prevented in transgenic mice. Consistent with the in vivo data, recombinant protein significantly enhanced fat oxidation in L6 myotubes via AMPK activation and reduced lipid accumulation in H4IIE hepatocytes. Collectively, these data establish CTRP9 as a novel metabolic regulator and a new component of the metabolic network that links adipose tissue to lipid metabolism in skeletal muscle and liver.


2008 ◽  
Vol 294 (5) ◽  
pp. E918-E927 ◽  
Author(s):  
David L. Allen ◽  
Allison S. Cleary ◽  
Kristin J. Speaker ◽  
Sarah F. Lindsay ◽  
Jill Uyenishi ◽  
...  

Myostatin (MSTN) is a secreted growth inhibitor expressed in muscle and adipose. We sought to determine whether expression of MSTN, its receptor activin RIIb (ActRIIb), or its binding protein follistatin-like-3 (FSTL3) are altered in subcutaneous or visceral adipose or in skeletal muscle in response to obesity. MSTN and ActRIIb mRNA levels were low in subcutaneous (SQF) and visceral fat (VF) from wild-type mice but were 50- to 100-fold higher in both SQF and VF from ob/ob compared with wild-type mice. FSTL3 mRNA levels were increased in SQF but decreased in VF in ob/ob compared with wild-type mice. Moreover, MSTN mRNA levels were twofold greater in tibialis anterior (TA) from ob/ob mice, whereas ActRIIb and FSTL3 mRNA levels were unchanged. MSTN mRNA levels were also increased in TA and SQF from mice on a high-fat diet. Injection of ob/ob mice with recombinant leptin caused FSTL3 mRNA levels to decrease in both VF and SQF in ob/ob mice; MSTN and ActRIIb mRNA levels tended to decrease only in VF. Finally, MSTN mRNA levels and promoter activity were low in adipogenic 3T3-L1 cells, but an MSTN promoter-reporter construct was activated in 3T3-L1 cells by cotransfection with the adipogenic transcription factors SREBP-1c, C/EBPα, and PPARγ. These results demonstrate that expression of MSTN and its associated binding proteins can be modulated in adipose tissue and skeletal muscle by chronic obesity and suggest that alterations in their expression may contribute to the changes in growth and metabolism of lean and fat tissues occurring during obesity.


Nutrients ◽  
2020 ◽  
Vol 12 (4) ◽  
pp. 1059
Author(s):  
Si Fan ◽  
Samnhita Raychaudhuri ◽  
Olivia Kraus ◽  
Md Shahinozzaman ◽  
Leila Lofti ◽  
...  

The shoot of Urtica dioica is used in several cultures as a vegetable or herb. However, not much has been studied about the potential of this plant when consumed as a whole food/vegetable rather than an extract for dietary supplements. In a 12-week dietary intervention study, we tested the effect of U. dioica vegetable on high fat diet induced obesity and insulin resistance in C57BL/6J mice. Mice were fed ad libitum with isocaloric diets containing 10% fat or 45% fat with or without U. dioica. The diet supplemented with U. dioica attenuated high fat diet induced weight gain (p < 0.005; n = 9), fat accumulation in adipose tissue (p < 0.005; n = 9), and whole-body insulin resistance (HOMA-IR index) (p < 0.001; n = 9). Analysis of gene expression in skeletal muscle showed no effect on the constituents of the insulin signaling pathway (AKT, IRS proteins, PI3K, GLUT4, and insulin receptor). Notable genes that impact lipid or glucose metabolism and whose expression was changed by U. dioica include fasting induced adipocyte factor (FIAF) in adipose and skeletal muscle, peroxisome proliferator-activated receptor-α (Ppar-α) and forkhead box protein (FOXO1) in muscle and liver, and Carnitine palmitoyltransferase I (Cpt1) in liver (p < 0.01). We conclude that U. dioica vegetable protects against diet induced obesity through mechanisms involving lipid accumulation and glucose metabolism in skeletal muscle, liver, and adipose tissue.


Author(s):  
Jun-Won Heo ◽  
Su-Zi Yoo ◽  
Mi-Hyun No ◽  
Dong-Ho Park ◽  
Ju-Hee Kang ◽  
...  

Obesity is characterized by the induction of skeletal muscle remodeling and mitochondria-mediated apoptosis. Exercise has been reported as a positive regulator of skeletal muscle remodeling and apoptosis. However, the effects of exercise on skeletal muscle remodeling and mitochondria-mediated apoptosis in obese skeletal muscles have not been clearly elucidated. Four-week-old C57BL/6 mice were randomly assigned into four groups: control (CON), control plus exercise (CON + EX), high-fat diet (HFD), and HFD plus exercise groups (HFD + EX). After obesity was induced by 20 weeks of 60% HFD feeding, treadmill exercise was performed for 12 weeks. Exercise ameliorated the obesity-induced increase in extramyocyte space and a decrease in the cross-sectional area of the skeletal muscle. In addition, it protected against increases in mitochondria-mediated apoptosis in obese skeletal muscles. These results suggest that exercise as a protective intervention plays an important role in regulating skeletal muscle structure and apoptosis in obese skeletal muscles.


2011 ◽  
Vol 2011 ◽  
pp. 1-10 ◽  
Author(s):  
Nobutomo Ikarashi ◽  
Takahiro Toda ◽  
Takehiro Okaniwa ◽  
Kiyomi Ito ◽  
Wataru Ochiai ◽  
...  

Acacia polyphenol (AP) extracted from the bark of the black wattle tree (Acacia meansii) is rich in unique catechin-like flavan-3-ols, such as robinetinidol and fisetinidol. The present study investigated the anti-obesity/anti-diabetic effects of AP using obese diabetic KKAy mice. KKAy mice received either normal diet, high-fat diet or high-fat diet with additional AP for 7 weeks. After the end of administration, body weight, plasma glucose and insulin were measured. Furthermore, mRNA and protein expression of obesity/diabetic suppression-related genes were measured in skeletal muscle, liver and white adipose tissue. As a result, compared to the high-fat diet group, increases in body weight, plasma glucose and insulin were significantly suppressed for AP groups. Furthermore, compared to the high-fat diet group, mRNA expression of energy expenditure-related genes (PPARα, PPARδ, CPT1, ACO and UCP3) was significantly higher for AP groups in skeletal muscle. Protein expressions of CPT1, ACO and UCP3 for AP groups were also significantly higher when compared to the high-fat diet group. Moreover, AP lowered the expression of fat acid synthesis-related genes (SREBP-1c, ACC and FAS) in the liver. AP also increased mRNA expression of adiponectin and decreased expression of TNF-αin white adipose tissue. In conclusion, the anti-obesity actions of AP are considered attributable to increased expression of energy expenditure-related genes in skeletal muscle, and decreased fatty acid synthesis and fat intake in the liver. These results suggest that AP is expected to be a useful plant extract for alleviating metabolic syndrome.


2016 ◽  
Vol 28 (4) ◽  
pp. 1260-1265 ◽  
Author(s):  
Jin Hee Woo ◽  
Ki Ok Shin ◽  
Yul Hyo Lee ◽  
Ki Soeng Jang ◽  
Ju Yong Bae ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document