scholarly journals Responsiveness and Adaptation to Salt Stress of the REDOX-RESPONSIVE TRANSCRIPTION FACTOR 1 (RRTF1) Gene are Controlled by its Promoter

2019 ◽  
Vol 61 (4) ◽  
pp. 254-260 ◽  
Author(s):  
Elham R. S. Soliman ◽  
Peter Meyer
2020 ◽  
Vol 61 (4) ◽  
pp. 685-698 ◽  
Author(s):  
Ruojia Zhu ◽  
Xiaoxia Dong ◽  
Yingying Xue ◽  
Jiawei Xu ◽  
Aiqi Zhang ◽  
...  

Abstract Extracellular adenosine triphosphate (eATP) is an apoplastic signaling molecule that plays an essential role in the growth and development of plants. Arabidopsis seedlings have been reported to respond to eATP; however, the downstream signaling components are still not well understood. In this study, we report that an ethylene-responsive factor, Redox-Responsive Transcription Factor 1 (RRTF1), is involved in eATP-regulated Arabidopsis thaliana seedling growth. Exogenous adenosine triphosphate inhibited green seedling root growth and induced hypocotyl bending of etiolated seedlings. RRTF1 loss-of-function mutant (rrtf1) seedlings showed decreased responses to eATP, while its complementation or overexpression led to recovered or increased eATP responsiveness. RRTF1 was expressed rapidly after eATP stimulation and then migrated into the nuclei of root tip cells. eATP-induced auxin accumulation in root tip or hypocotyl cells was impaired in rrtf1. Chromatin immunoprecipitation and high-throughput sequencing results indicated that eATP induced some genes related to cell growth and development in wild type but not in rrtf1 cells. These results suggest that RRTF1 may be involved in eATP signaling by regulating functional gene expression and cell metabolism in Arabidopsis seedlings.


2014 ◽  
Vol 369 (1640) ◽  
pp. 20130226 ◽  
Author(s):  
Christine H. Foyer ◽  
Barbara Karpinska ◽  
Karin Krupinska

Chloroplasts are important sensors of environment change, fulfilling key roles in the regulation of plant growth and development in relation to environmental cues. Photosynthesis produces a repertoire of reductive and oxidative (redox) signals that provide information to the nucleus facilitating appropriate acclimation to a changing light environment. Redox signals are also recognized by the cellular innate immune system allowing activation of non-specific, stress-responsive pathways that underpin cross tolerance to biotic–abiotic stresses. While these pathways have been intensively studied in recent years, little is known about the different components that mediate chloroplast-to-nucleus signalling and facilitate cross tolerance phenomena. Here, we consider the properties of the WHIRLY family of proteins and the REDOX-RESPONSIVE TRANSCRIPTION FACTOR 1 (RRTF1) in relation to chloroplast redox signals that facilitate the synergistic co-activation of gene expression pathways and confer cross tolerance to abiotic and biotic stresses. We propose a new hypothesis for the role of WHIRLY1 as a redox sensor in chloroplast-to-nucleus retrograde signalling leading to cross tolerance, including acclimation and immunity responses. By virtue of its association with chloroplast nucleoids and with nuclear DNA, WHIRLY1 is an attractive candidate coordinator of the expression of photosynthetic genes in the nucleus and chloroplasts. We propose that the redox state of the photosynthetic electron transport chain triggers the movement of WHIRLY1 from the chloroplasts to the nucleus, and draw parallels with the regulation of NONEXPRESSOR OF PATHOGENESIS-RELATED GENES 1 (NPR1).


2020 ◽  
Vol 21 (6) ◽  
pp. 2177 ◽  
Author(s):  
Bo Li ◽  
Jia-Cheng Zheng ◽  
Ting-Ting Wang ◽  
Dong-Hong Min ◽  
Wen-Liang Wei ◽  
...  

Vascular plant one-zinc-finger (VOZ) transcription factor, a plant specific one-zinc-finger-type transcriptional activator, is involved in regulating numerous biological processes such as floral induction and development, defense against pathogens, and response to multiple types of abiotic stress. Six VOZ transcription factor-encoding genes (GmVOZs) have been reported to exist in the soybean (Glycine max) genome. In spite of this, little information is currently available regarding GmVOZs. In this study, GmVOZs were cloned and characterized. GmVOZ genes encode proteins possessing transcriptional activation activity in yeast cells. GmVOZ1E, GmVOZ2B, and GmVOZ2D gene products were widely dispersed in the cytosol, while GmVOZ1G was primarily located in the nucleus. GmVOZs displayed a differential expression profile under dehydration, salt, and salicylic acid (SA) stress conditions. Among them, GmVOZ1G showed a significantly induced expression in response to all stress treatments. Overexpression of GmVOZ1G in soybean hairy roots resulted in a greater tolerance to drought and salt stress. In contrast, RNA interference (RNAi) soybean hairy roots suppressing GmVOZ1G were more sensitive to both of these stresses. Under drought treatment, soybean composite plants with an overexpression of hairy roots had higher relative water content (RWC). In response to drought and salt stress, lower malondialdehyde (MDA) accumulation and higher peroxidase (POD) and superoxide dismutase (SOD) activities were observed in soybean composite seedlings with an overexpression of hairy roots. The opposite results for each physiological parameter were obtained in RNAi lines. In conclusion, GmVOZ1G positively regulates drought and salt stress tolerance in soybean hairy roots. Our results will be valuable for the functional characterization of soybean VOZ transcription factors under abiotic stress.


2011 ◽  
Vol 13 (9) ◽  
pp. 1146-1152 ◽  
Author(s):  
Emilie Blanchet ◽  
Jean-Sébastien Annicotte ◽  
Sylviane Lagarrigue ◽  
Victor Aguilar ◽  
Cyrielle Clapé ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document