Designing miniaturized metamaterial absorber with tunable multiband characteristics for THz applications

2021 ◽  
Vol 44 (4) ◽  
Author(s):  
Balu Ashvanth ◽  
Bactavatchalame Partibane ◽  
Govindanarayanan Idayachandran
IEEE Access ◽  
2019 ◽  
Vol 7 ◽  
pp. 161255-161263 ◽  
Author(s):  
Hong-En Su ◽  
Jia-Lin Li ◽  
Lei Xia

2014 ◽  
Vol 2 (3) ◽  
pp. 275-279 ◽  
Author(s):  
Salvatore Savo ◽  
David Shrekenhamer ◽  
Willie J. Padilla

2020 ◽  
Vol 91 (3) ◽  
pp. 30901
Author(s):  
Yibo Tang ◽  
Longhui He ◽  
Jianming Xu ◽  
Hailang He ◽  
Yuhan Li ◽  
...  

A dual-band microwave metamaterial absorber with single-peak regulation and wide-angle absorption has been proposed and illustrated. The designed metamaterial absorber is consisted of hollow-cross resonators, solid-cross resonators, dielectric substrate and metallic background plane. Strong absorption peak coefficients of 99.92% and 99.55% are achieved at 8.42 and 11.31 GHz, respectively, which is basically consistent with the experimental results. Surface current density and changing material properties are employed to illustrate the absorptive mechanism. More importantly, the proposed dual-band metamaterial absorber has the adjustable property of single absorption peak and could operate well at wide incidence angles for both transverse electric (TE) and transverse magnetic (TM) waves. Research results could provide and enrich instructive guidances for realizing a single-peak-regulation and wide-angle dual-band metamaterial absorber.


2011 ◽  
Vol 28 (6) ◽  
pp. 067808 ◽  
Author(s):  
Chao Gu ◽  
Shao-Bo Qu ◽  
Zhi-Bin Pei ◽  
Hua Ma ◽  
Zhuo Xu ◽  
...  

Nanomaterials ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 114
Author(s):  
Chang Lu ◽  
Qingjian Lu ◽  
Min Gao ◽  
Yuan Lin

The reversible and multi-stimuli responsive insulator-metal transition of VO2, which enables dynamic modulation over the terahertz (THz) regime, has attracted plenty of attention for its potential applications in versatile active THz devices. Moreover, the investigation into the growth mechanism of VO2 films has led to improved film processing, more capable modulation and enhanced device compatibility into diverse THz applications. THz devices with VO2 as the key components exhibit remarkable response to external stimuli, which is not only applicable in THz modulators but also in rewritable optical memories by virtue of the intrinsic hysteresis behaviour of VO2. Depending on the predesigned device structure, the insulator-metal transition (IMT) of VO2 component can be controlled through thermal, electrical or optical methods. Recent research has paid special attention to the ultrafast modulation phenomenon observed in the photoinduced IMT, enabled by an intense femtosecond laser (fs laser) which supports “quasi-simultaneous” IMT within 1 ps. This progress report reviews the current state of the field, focusing on the material nature that gives rise to the modulation-allowed IMT for THz applications. An overview is presented of numerous IMT stimuli approaches with special emphasis on the underlying physical mechanisms. Subsequently, active manipulation of THz waves through pure VO2 film and VO2 hybrid metamaterials is surveyed, highlighting that VO2 can provide active modulation for a wide variety of applications. Finally, the common characteristics and future development directions of VO2-based tuneable THz devices are discussed.


Sign in / Sign up

Export Citation Format

Share Document