scholarly journals High energy power-law tail in X-ray binaries and bulk Comptonization due to an outflow from a disk

Author(s):  
Nagendra Kumar
Keyword(s):  
X Ray ◽  

1997 ◽  
Vol 163 ◽  
pp. 41-52
Author(s):  
S.N. Zhang

AbstractA variety of high energy (>1 keV) spectra have been observed in recent years from Black Hole (BH) and Neutron Star (NS) X-ray Binaries (XB). Some common physical components exist between BHXBs and NSXBs, resulting in some high energy spectral features. A common component between a BHXB and a weakly magnetized NSXB is the inner accretion disk region extending very close to the surface (for a NS) or the horizon (for a BH). The inner disk radiation can be described by a multi-color blackbody (MCB) spectral model. The surface radiation of the NS can be approximated by a Single Color Blackbody (SCB) spectrum. For a strongly magnetized NSXB, the high energy emission is from its magnetosphere, characterised by a thermal bremsstrahlung (TB) spectrum. In both BHXBs and weakly magnetized NSXBs, a hot electron cloud may exist, producing the hard X-ray power law (photon index −1.5 to −2.0) with thermal cutoff (50–200 keV). It has been recently proposed that a converging flow may be formed near the horizon of a BH, producing a softer power law (photon index about −2.5) without cutoff up to several hundred keV. Based on these concepts we also discuss possible ways to distinguish between BH and NS XBs. Finally we discuss briefly spectral state transitions in both BH and NS XBs.





Universe ◽  
2020 ◽  
Vol 6 (11) ◽  
pp. 219
Author(s):  
Elena Fedorova ◽  
B.I. Hnatyk ◽  
V.I. Zhdanov ◽  
A. Del Popolo

3C111 is BLRG with signatures of both FSRQ and Sy1 in X-ray spectrum. The significant X-ray observational dataset was collected for it by INTEGRAL, XMM-Newton, SWIFT, Suzaku and others. The overall X-ray spectrum of 3C 111 shows signs of a peculiarity with the large value of the high-energy cut-off typical rather for RQ AGN, probably due to the jet contamination. Separating the jet counterpart in the X-ray spectrum of 3C 111 from the primary nuclear counterpart can answer the question is this nucleus truly peculiar or this is a fake “peculiarity” due to a significant jet contribution. In view of this question, our aim is to estimate separately the accretion disk/corona and non-thermal jet emission in the 3C 111 X-ray spectra within different observational periods. To separate the disk/corona and jet contributions in total continuum, we use the idea that radio and X-ray spectra of jet emission can be described by a simple power-law model with the same photon index. This additional information allows us to derive rather accurate values of these contributions. In order to test these results, we also consider relations between the nuclear continuum and the line emission.



2011 ◽  
Vol 11 (6) ◽  
pp. 631-636 ◽  
Author(s):  
Li-Hong Yan ◽  
Jian-Cheng Wang
Keyword(s):  
X Ray ◽  


1988 ◽  
Vol 20 (1) ◽  
pp. 671-675
Author(s):  
C.J. Cesarsky ◽  
R.A. Sunyaev ◽  
G.W. Clark ◽  
R. Giacconi ◽  
Vin-Yue Qu ◽  
...  

The european X-ray observatory (EXOSAT), which was launched in 1983 and which finished operations in April 1986, has brought a rich harvest of results in the period 1984-1987, surveyed here. The EXOSAT payload consisted of three sets of instruments: two low energy imaging telescopes (LE:E<2 KeV), a medium-energy experiment (ME:E=l-50KeV) and a gas scintillation proportional counter (GSPC:E=2-20KeV). Over most of the energy range covered, EXOSAT was not more sensitive than its predecessor, the american EINSTEIN satellite. But the EINSTEIN satellite is far from having exhausted the treasures of the X-ray sky. And EXOSAT, thanks to its elliptical 90-hour orbit, had the extra advantage of being able to make long, continuous observations of interesting objects, lasting up to 72 hours. Thus, EXOSAT was very well suited for variability studies, and many of its most important findings are in this area. EXOSAT observations sample a vide range of astrophysical sources: X-ray binaries, cataclysmic variables and active stars; supernova remnants and the interstellar medium; active galactic nuclei, and clusters of galaxies. Among the highlights, let us mention:



2008 ◽  
Vol 4 (S256) ◽  
pp. 20-29 ◽  
Author(s):  
Yaël Nazé

AbstractIn the study of stars, the high energy domain occupies a place of choice, since it is the only one able to directly probe the most violent phenomena: indeed, young pre-main sequence objects, hot massive stars, or X-ray binaries are best revealed in X-rays. However, previously available X-ray observatories often provided only crude information on individual objects in the Magellanic Clouds. The advent of the highly efficient X-ray facilities XMM-Newton and Chandra has now dramatically increased the sensitivity and the spatial resolution available to X-ray astronomers, thus enabling a fairly easy determination of the properties of individual sources in the LMC.



2010 ◽  
Vol 6 (S275) ◽  
pp. 215-223
Author(s):  
Valentí Bosch-Ramon

AbstractMicroquasars are X-ray binaries that show extended radio jets. These jets can accelerate particles up to relativistic energies that produce non-thermal emission from radio to TeV, and could also make a non-negligible contribution to the galactic CRs in some energy ranges. The orbital motion and compactness of these sources allow the study of high-energy astrophysical phenomena in extreme conditions that change in accessible timescales. In this work, I briefly discuss the production of broadband non-thermal emission in microquasars, putting special emphasis on the high- and the very high-energy bands.



1986 ◽  
Vol 309 ◽  
pp. 674 ◽  
Author(s):  
T. K. Gaisser ◽  
F. W. Stecker ◽  
A. K. Harding ◽  
J. J. Barnard


Sign in / Sign up

Export Citation Format

Share Document