Differential tolerance capacity of intertidal organisms (sponge and zoanthid) to the environmental stresses: Preliminary findings from a rockpool transplantation experiment

2021 ◽  
Vol 131 (1) ◽  
Author(s):  
Anshika Singh ◽  
Narsinh L Thakur ◽  
Farhan Sheikh
Author(s):  
Zhenhua Yu ◽  
Abdel-Salam G. Abdel-Salam ◽  
Ayesha Sohail ◽  
Fatima Alam

Biomolecules ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 668
Author(s):  
Amit Kumar Singh ◽  
Shanmuhapreya Dhanapal ◽  
Alin Finkelshtein ◽  
Daniel A. Chamovitz

In nature, plants are exposed to several environmental stresses that can be continuous or recurring. Continuous stress can be lethal, but stress after priming can increase the tolerance of a plant to better prepare for future stresses. Reports have suggested that transcription factors are involved in stress memory after recurrent stress; however, less is known about the factors that regulate the resetting of stress memory. Here, we uncovered a role for Constitutive Photomorphogenesis 5A (CSN5A) in the regulation of stress memory for resetting transcriptional memory genes (APX2 and HSP22) and H3K4me3 following recurrent heat stress. Furthermore, CSN5A is also required for the deposition of H3K4me3 following recurrent heat stress. Thus, CSN5A plays an important role in the regulation of histone methylation and transcriptional stress memory after recurrent heat stress.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
R. M. Forkner ◽  
J. Dahl ◽  
A. Fildani ◽  
S. M. Barbanti ◽  
I. A. Yurchenko ◽  
...  

AbstractThe Cenomanian–Turonian mass extinction (Oceanic Anoxic Event 2-OAE2) was a period of profound ecological change that is recorded in the sedimentary record in many locations around the globe. In this study, we provide a new and detailed account of repetitive changes in water column ecology by analyzing the organic geochemical record preserved within the OAE2 section of the Greenhorn Formation, Western Interior Seaway (WIS) of North America. Results from this study provide evidence that OAE2 in the WIS was the result of the cumulative effect of reoccurring environmental stresses rather than a single massive event. During OAE2, extreme variations in biotic composition occurred erratically over periods of several thousands of years as revealed by molecular fossil (biomarker) abundances and distributions calibrated to sedimentation rates. These cycles of marine productivity decline almost certainly had follow-on effects through the ecosystem and likely contributed to the Cenomanian–Turonian mass extinction. While the causes behind organic productivity cycling are yet unproven, we postulate that they may have been linked to repeated episodes of volcanic activity. Catastrophic volcanism and related CO2 outgassing have been interpreted as main drivers for OAE2, though this study provides new evidence that repetitive, punctuated environmental stresses were also important episodes within the anatomy of OAE2. Following OAE2, these cycles of productivity decline disappeared, and the WIS returned to conditions comparable to pre-OAE2 levels.


Sign in / Sign up

Export Citation Format

Share Document