scholarly journals Mitigation of shock-induced flow separation using magnetohydrodynamic flow control

Sadhana ◽  
2017 ◽  
Vol 42 (3) ◽  
pp. 379-390
Author(s):  
R Balasubramanian ◽  
K Anandhanarayanan ◽  
R Krishnamurthy ◽  
Debasis Chakraborty
Author(s):  
Sertac Cadirci ◽  
Hasan Gunes

An oscillatory, zero-net-mass flux actuator system, Jet and Vortex Actuator (JaVA), is implemented on the step wall of a backward facing step. JaVA can energize the boundary layer by creating jets or vortices thus it may delay flow separation when used properly. The main part of JaVA is a rectangular cavity with a moving actuator plate. The actuator plate is mounted asymmetrically inside the cavity of the JaVA box, such that there are one narrow and one wide gap between the plate and the box. The main governing parameters are the actuator plate’s width (b), the amplitude (a) and the operating frequency (f). The main target of the control with active jets on the step wall is to influence directly the main recirculation zone, thus as the actuator plate or the step’s vertical wall moves periodically in horizontal direction, a jet emerges into the recirculation zone. Non-dimensional numbers such as the scaled amplitude (Sa = 2πa/b) and the jet Reynolds number (ReJ = 4abf/ν) as well as the cross flow parameter characterize the JaVA-induced flow types and the effects on the recirculation zone. One period consists of one blowing and one suction phase into the recirculation zone. Boundary layer profiles extracted from time-averaged flow fields of the not actuated (f = 0) and actuated cases at various operating frequencies indicate the effect of active flow control. The interaction between JaVA-induced flow regimes and the boundary layer is investigated numerically in an open channel with a BFS. The computational domain consists of a moving zone along the channel and the motion of the actuator plate is generated by a moving grid imposing appropriate boundary conditions with User-Defined-Functions and the calculations are carried out by a commercial finite-volume-based unsteady, laminar, incompressible Navier-Stokes solver. Numerical simulations and comparisons reveal the JaVA-boundary layer interaction for various governing parameters. Reynolds numbers based on the step height for the shallow open channel flow are Reh = 225 and 450. The proposed control method based on suction and blowing with an oscillating vertical step seems to be effective in shortening the recirculation zone length and delaying the flow separation downstream of the backward facing step.


Energies ◽  
2021 ◽  
Vol 14 (6) ◽  
pp. 1781
Author(s):  
Weiyu Lu ◽  
Xin Fu ◽  
Jinchun Wang ◽  
Yuanchi Zou

Vibration wall control is an important active flow control technique studied by many researchers. Although current researches have shown that the control performance is greatly affected by the frequency and amplitude of the vibration wall, the mechanism hiding behind the phenomena is still not clear, due to the complex interaction between the vibration wall and flow separation. To reveal the control mechanism of vibration walls, we propose a simplified model to help us understand the interaction between the forced excitation (from the vibration wall) and self-excitation (from flow instability). The simplified model can explain vibration wall flow control behaviors obtained by numerical simulation, which show that the control performance will be optimized at a certain reduced vibration frequency or amplitude. Also, it is shown by the analysis of maximal Lyapunov exponents that the vibration wall is able to change the flow field from a disordered one into an ordered one. Consistent with these phenomena and bringing more physical insight, the simplified model implies that the tuned vibration frequency and amplitude will lock in the unsteady flow separation, promote momentum transfer from the main stream to the separation zone, and make the flow field more orderly and less chaotic, resulting in a reduction of flow loss.


2021 ◽  
Author(s):  
Kewei Xu ◽  
Gecheng Zha

Abstract This paper applies Co-flow Jet (CFJ) active flow control airfoil to a NREL horizontal axis wind turbine for power output improvement. CFJ is a zero-net-mass-flux active flow control method that dramatically increases airfoil lift coefficient and suppresses flow separation at a low energy expenditure. The 3D Reynolds Averaged Navier-Stokes (RANS) equations with one-equation Spalart-Allmaras (SA) turbulence model are solved to simulate the 3D flows of the wind turbines. The baseline wind turbine is the NREL 10.06m diameter phase VI wind turbine and is modified to a CFJ blade by implementing CFJ along the span. The baseline wind turbine performance is validated with the experiment at three wind speeds, 7m/s, 15m/s, and 25m/s. The predicted blade surface pressure distributions and power output agree well with the experimental measurements. The study indicates that the CFJ can enhance the power output at the condition where angle of attack is increased to the level that conventional wind turbine is stalled. At the speed of 7m/s that the NREL turbine is designed to achieve the optimum efficiency at the pitch angle of 3°, the CFJ turbine does not increase the power output. When the pitch angle is reduced by 13° to −10°, the baseline wind turbine is stalled and generates negative power output at 7m/s. But the CFJ wind turbine increases the power output by 12.3% assuming CFJ fan efficiency of 80% at the same wind speed. This is an effective method to extract more power from the wind at all speeds. It is particularly useful at low speeds to decrease cut-in speed and increase power output without exceeding the structure limit. At the freestream velocity of 15m/s and the CFJ momentum coefficient Cμ of 0.23, the net power output is increased by 207.7% assuming the CFJ fan efficiency of 80%, compared to the baseline wind turbine due to the removal of flow separation. The CFJ wind turbine appears to open a door to a new area of wind turbine efficiency improvement and adaptive control for optimal loading.


Proceedings ◽  
2018 ◽  
Vol 2 (13) ◽  
pp. 794
Author(s):  
Cécile Ghouila-Houri ◽  
Célestin Ott ◽  
Romain Viard ◽  
Quentin Gallas ◽  
Eric Garnier ◽  
...  

This paper reports a calorimetric micro-sensor designed for aerodynamic applications. Measuring both the amplitude and the sign of the wall shear stress at small length-scale and high frequencies, the micro-sensor is particularly suited for flow separation detection and flow control. The micro-sensor was calibrated in static and dynamic in a turbulent boundary layer wind tunnel. Several micro-sensors were embedded in various configurations for measuring the shear stress and detecting flow separation. Specially, one was embedded inside an actuator slot for in situ measurements and twelve, associated with miniaturized electronics, were implemented on a flap model for active flow control experiments.


Author(s):  
Marcel Staats ◽  
Wolfgang Nitsche

We present results of experiments on a periodically unsteady compressor stator flow of the type which would be expected in consequence of pulsed combustion. A Reynolds number of Re = 600000 was used for the investigations. The experiments were conducted on the two-dimensional low-speed compressor testing facility in Berlin. A choking device downstream the trailing edges induced a periodic non-steady outflow condition to each stator vane which simulated the impact of a pressure gaining combuster downstream from the last stator. The Strouhal number of the periodic disturbance was Sr = 0.03 w.r.t. the stator chord length. Due to the periodic non-steady outflow condition, the flow-field suffers from periodic flow separation phenomena, which were managed by means of active flow control. In our case, active control of the corner separation was applied using fluidic actuators based on the principle of fluidic amplification. The flow separation on the centre region of the stator blade was suppressed by means of a fluidic blade actuator leading to an overall time-averaged loss reduction of 11.5%, increasing the static pressure recovery by 6.8% while operating in the non-steady regime. Pressure measurements on the stator blade and the wake as well as PIV data proved the beneficial effect of the active flow control application to the flow field and the improvement of the compressor characteristics. The actuation efficiency was evaluated by two figures of merit introduced in this contribution.


2021 ◽  
Vol 2119 (1) ◽  
pp. 012025
Author(s):  
A. S. Lebedev ◽  
M. I. Sorokin ◽  
D. M. Markovich

Abstract The development of methods of active separation flow control is of great applied importance for many technical and engineering applications. Understanding the conditions for the flow separation from the surface of a bluff body is essential for the design of aircrafts, cars, hydro and gas turbines, bridges and buildings. Drag, acoustic noise, vibrations and active flow mixing depend drastically on the parameters of the vortex separation process. We investigated the possibility of reducing the longitudinal length of a reverse-flow region using the method of «synthetic jet» active separation flow control. The experiment was carried out on a compact straight-through wind channel with a 1-m long test section of a cross-section of 125x125 mm. The jet was placed at the rear stagnation point of a circular cylinder. The Reynolds number, based on the cylinder diameter and the free-stream velocity, was 5000 and the von Kármán street shedding frequency without the synthetic jet was equal to 64.8 Hz. For the first time, for such a set of parameters, we applied high speed PIV to demonstrate that the injection of the synthetic jet into the cylinder wake region leads to a significant reduction in the longitudinal length of the reverse-flow region.


2019 ◽  
Vol 160 ◽  
pp. 106-115
Author(s):  
Semih Olcmen ◽  
Gary Cheng ◽  
Richard Branam ◽  
Yitong Gao ◽  
John Baker

AIAA Journal ◽  
2020 ◽  
Vol 58 (5) ◽  
pp. 2122-2131 ◽  
Author(s):  
B. Zebiri ◽  
A. Piquet ◽  
A. Hadjadj ◽  
S. B. Verma
Keyword(s):  

2012 ◽  
Vol 588-589 ◽  
pp. 1786-1789
Author(s):  
Yong Hui Xie ◽  
Zhong Yang Shen ◽  
Tao Fan

In order to investigate the mechanism of flow separation control in conical diffuser by vortex generator jets (VGJs) method, numerical simulations were conducted to discuss the effect of VGJs with different parameters on flow control. The aerodynamic performance in conical diffuser with angle of 14° was tested and analyzed based on Shear-Stress-Transport (SST) simulation. The flow charts at several sections were analyzed, illuminating the formation of complex vortices. Moreover, the effects of 5 VGJs parameters on the diffuser were analyzed by orthogonal analysis. It was shown that the number of jets and the pitch angle of jet showed more profound influence on the flow control by VGJs.


Sign in / Sign up

Export Citation Format

Share Document