scholarly journals Correction to: Thermal energy reduction in sanitary‑ware industry by heat‑recovering thermal engineering technologies

2021 ◽  
Vol 14 (8) ◽  
Author(s):  
Carlos Cuviella‑Suárez ◽  
Antonio Colmenar‑Santos ◽  
David Borge‑Diez
2021 ◽  
Vol 14 (8) ◽  
Author(s):  
Carlos Cuviella-Suárez ◽  
Antonio Colmenar-Santos ◽  
David Diez-Borge

Abstract Ceramic industry manufacturing requires a great amount of thermal energy. Its sustainability and environmental impact demand an effort to develop more efficient technologies to reduce the consumption of fuel, mainly natural gas. In particular, the sanitary-ware production sector presents a defined special map of consumption through the manufacturing process because of the heat amounts and thermal levels of temperature. The aim of this research is to quantify the potential reduction of fuel consumption within a standard factory of sanitary-ware articles. The scope of it covers the main gas consumers, namely, kilns, dryers, heating units, or boilers. The method is based in a simulation of the process by modeling the thermophysics of the consumers, then plotting the heat recovery from one to another in order to save natural gas input. The research shows how the thermal requirement would be cut by almost a half within the factory consumption. It is consequently concluded that efficiency, environmental impact, and sustainability of this industrial sector would be improved, so as the global economy related with a potential growth of this industry, mainly in developing countries. Graphical abstract Highlights Thermal consumption reduction in a sanitary-ware factory is presented and validated. Heat recovery from kilns provides thermal energy for the rest of the thermal consumers. Energy management accounting as an extension to environmental management accounting is provided. The proposed method produces reductions of resources and economic improvements.


2010 ◽  
Vol 43 (7) ◽  
pp. 212-216 ◽  
Author(s):  
Martin Brown ◽  
Puya Afshar ◽  
Hong Wang ◽  
Timofei Breikin

2012 ◽  
Vol 89 (1) ◽  
pp. 74-80 ◽  
Author(s):  
Iqbal M. Mujtaba ◽  
Elmahboub A. Edreder ◽  
Mansour Emtir

Energies ◽  
2020 ◽  
Vol 13 (8) ◽  
pp. 1988 ◽  
Author(s):  
Qimei Chen ◽  
Yan Wang ◽  
Jianhan Zhang ◽  
Zhifeng Wang

Decreasing the levelized cost of renewable energy and improving the stability of power systems are the key requirements for realizing the sustainable growth of power production capacity. Concentrating solar power (CSP) technology with thermal energy storage can overcome the intermittent and unstable nature of solar energy, and its development is of great significance for the sustainable development of human society. In this paper, topic discovery and clustering were studied using bibliometric, social network analysis and information visualization technology based on the Web of Science database (SCI-Expanded) and the incoPat global patent database. The technology searched for papers and patents related to CSP technology to reveal the development trends of CSP technology and provide the references for related technical layout and hot spot tracking. The results show that the global output of CSP technology papers has continued to grow steadily, whereas the number of patent applications showed a significant downtrend. CSP technology, which is at the initial stage of commercialization, still needs technological breakthroughs. Technological innovation that integrates thermal engineering, control engineering, physics, chemistry, materials, and other disciplines may become an effective path for CSP technology development in the future. CSP technology research shows increasing research and development trends in high-temperature receivers, phase-change thermal energy storage, the overall performance of thermal power generation systems, and a development trend from a single technology to multi-energy complementary systems.


2019 ◽  
Vol 141 (2) ◽  
Author(s):  
Hermes Chirino ◽  
Ben Xu

Compared to solar photovoltaics, concentrated solar power (CSP) can store excessive solar thermal energy, extend the power generation, and levelize the mismatch between the demand and supply. Thermal energy storage (TES) system filled with phase change material (PCM) is a key to make CSP competitive, and it is also a promising indirect energy storage technique. It is of great interests to the solar thermal engineering community to apply the latent heat thermal energy storage (LHTES) system for large-scale CSP application, because PCMs can store more energy due to the latent heat during the melting/freezing process. Therefore, a comprehensive parametric analysis of LHTES system is necessary in order to identify the most sensitive ranges of various parameters to design the LHTES system with better systematic performances. In this study, unlike the existing parametric study based on dimensional parameters, we aimed to provide a more general analysis using dimensionless parameters; therefore, an 11-dimensionless-parameter space of LHTES system was developed, by considering the technical constraints (material properties and operation parameters), without economic constraints. The parametric study and sensitivity analysis were then performed based on a 1D enthalpy-based transient model, and the energy storage efficiency was used as the objective function to minimize the number of variables in the parameter space. It was found that Stanton number (St), dimensionless PCM radius (r/D), and void fraction (ε) are the three most important dimensionless parameters. It is expected that the discovery of this study can bring more discussions in the solar thermal engineering community about the implementation of LHTES system in CSP plant, to further explore the significances of these three dimensionless parameters to the operation of the LHTES system.


Author(s):  
Nilo Serpa ◽  
Gisele Alves Fernandes

<p>This article discusses the concept of entropy in an alternative thermodynamic view, demonstrating dialectically that the reversibility illustrated in common laboratory practice is only a local technical effect resulting from anthropic processes that slow down the irreversible advance of the disorder. Then, negative entropy is only a fiction stemming from the imaginationist idealism. The Lagrangian formalism is applied from the introduction of the idea of temporal confinement of thermal energy states, with time being interpreted as the basis of an evolutionary variable. The acceleration of entropy is formally presented independently of statistical mechanics.</p><p><br /><strong>Key words</strong>: thermodynamics, entropy, entropy acceleration, irreversibility.</p><p>=================================================================</p><p>O presente artigo discute o conceito de entropia numa visão termodinâmica alternativa, demonstrando dialeticamente que a reversibilidade ilustrada na prática laboratorial comum é apenas um efeito técnico local decorrente de processos antrópicos que desaceleram o avanço irreversível da desordem. Dessa forma, entropia negativa é uma ficção decorrente do idealismo imaginacionista. O formalismo Lagrangeano é aplicado a partir da introdução da ideia de confinamento temporal dos estados de energia térmica, com o tempo sendo interpretado como base de uma variável evolutiva. A aceleração da entropia é formalmente apresentada de modo independente da mecânica estatística.</p><p><br /><strong>Palavras-chave</strong>: termodinâmica, entropia, aceleração da entropia, irreversibilidade.</p>


Author(s):  
E. Grover-Silva ◽  
D. A. McKahn ◽  
D. Weisbord

We present a methodology to assess the technical feasibility of building thermal energy reduction strategies from an architecturally diverse building stock that is not metered. While carbon emissions forecasting efforts are typically the domain of planning and policy, the process detailed here can inform institutional decision-making relative to investments in renewable energy, infrastructure, and offsets to further reduce carbon footprint. As a case study, we estimated the Smith College campus building thermal energy losses, an analysis which informed our Sustainability and Climate Action Plan [1]. Due to building specific physical constraints and planned renovations, different thermal envelope improvement scenarios were then considered to estimate the heating energy reduction potential of these envelope improvements. The current total heating energy consumption from 79 of our campus buildings was found to be 57,000 MMBTU/yr. Across the three building categories with minimal existing insulation and poor sealing conditions, the nominal annual thermal energy loss per square foot ranged from 27,000–37,000 BTU/ft2. Should envelope improvements be made targeting a 5 year simple payback, this annual thermal energy loss would be reduced by 40% to 34,000 MMBTU/yr. More extensive and less cost effective envelope improvements suggest further energy reductions approaching 30,000 MMBTU/yr (between 13,000–23,000 BTU/ft2/yr depending upon the building type).


Sign in / Sign up

Export Citation Format

Share Document