Evolutionary algorithm applications for IoTs dedicated to precise irrigation systems: state of the art

Author(s):  
Soumaya Ferhat Taleb ◽  
Nour El-Houda Benalia ◽  
Rabah Sadoun
2020 ◽  
Author(s):  
Fei Qi ◽  
Zhaohui Xia ◽  
Gaoyang Tang ◽  
Hang Yang ◽  
Yu Song ◽  
...  

As an emerging field, Automated Machine Learning (AutoML) aims to reduce or eliminate manual operations that require expertise in machine learning. In this paper, a graph-based architecture is employed to represent flexible combinations of ML models, which provides a large searching space compared to tree-based and stacking-based architectures. Based on this, an evolutionary algorithm is proposed to search for the best architecture, where the mutation and heredity operators are the key for architecture evolution. With Bayesian hyper-parameter optimization, the proposed approach can automate the workflow of machine learning. On the PMLB dataset, the proposed approach shows the state-of-the-art performance compared with TPOT, Autostacker, and auto-sklearn. Some of the optimized models are with complex structures which are difficult to obtain in manual design.


2003 ◽  
Vol 11 (2) ◽  
pp. 151-167 ◽  
Author(s):  
Andrea Toffolo ◽  
Ernesto Benini

A key feature of an efficient and reliable multi-objective evolutionary algorithm is the ability to maintain genetic diversity within a population of solutions. In this paper, we present a new diversity-preserving mechanism, the Genetic Diversity Evaluation Method (GeDEM), which considers a distance-based measure of genetic diversity as a real objective in fitness assignment. This provides a dual selection pressure towards the exploitation of current non-dominated solutions and the exploration of the search space. We also introduce a new multi-objective evolutionary algorithm, the Genetic Diversity Evolutionary Algorithm (GDEA), strictly designed around GeDEM and then we compare it with other state-of-the-art algorithms on a well-established suite of test problems. Experimental results clearly indicate that the performance of GDEA is top-level.


Author(s):  
Rung-Tzuo Liaw ◽  
Chuan-Kang Ting

Evolutionary multitasking is a significant emerging search paradigm that utilizes evolutionary algorithms to concurrently optimize multiple tasks. The multi-factorial evolutionary algorithm renders an effectual realization of evolutionary multitasking on two or three tasks. However, there remains room for improvement on the performance and capability of evolutionary multitasking. Beyond three tasks, this paper proposes a novel framework, called the symbiosis in biocoenosis optimization (SBO), to address evolutionary many-tasking optimization. The SBO leverages the notion of symbiosis in biocoenosis for transferring information and knowledge among different tasks through three major components: 1) transferring information through inter-task individual replacement, 2) measuring symbiosis through intertask paired evaluations, and 3) coordinating the frequency and quantity of transfer based on symbiosis in biocoenosis. The inter-task individual replacement with paired evaluations caters for estimation of symbiosis, while the symbiosis in biocoenosis provides a good estimator of transfer. This study examines the effectiveness and efficiency of the SBO on a suite of many-tasking benchmark problems, designed to deal with 30 tasks simultaneously. The experimental results show that SBO leads to better solutions and faster convergence than the state-of-the-art evolutionary multitasking algorithms. Moreover, the results indicate that SBO is highly capable of identifying the similarity between problems and transferring information appropriately.


2021 ◽  
Author(s):  
◽  
Abdul Wahid

<p>Clustering is an unsupervised machine learning technique, which involves discovering different clusters (groups) of similar objects in unlabeled data and is generally considered to be a NP hard problem. Clustering methods are widely used in a verity of disciplines for analyzing different types of data, and a small improvement in clustering method can cause a ripple effect in advancing research of multiple fields.  Clustering any type of data is challenging and there are many open research questions. The clustering problem is exacerbated in the case of text data because of the additional challenges such as issues in capturing semantics of a document, handling rich features of text data and dealing with the well known problem of the curse of dimensionality.  In this thesis, we investigate the limitations of existing text clustering methods and address these limitations by providing five new text clustering methods--Query Sense Clustering (QSC), Dirichlet Weighted K-means (DWKM), Multi-View Multi-Objective Evolutionary Algorithm (MMOEA), Multi-objective Document Clustering (MDC) and Multi-Objective Multi-View Ensemble Clustering (MOMVEC). These five new clustering methods showed that the use of rich features in text clustering methods could outperform the existing state-of-the-art text clustering methods.  The first new text clustering method QSC exploits user queries (one of the rich features in text data) to generate better quality clusters and cluster labels.  The second text clustering method DWKM uses probability based weighting scheme to formulate a semantically weighted distance measure to improve the clustering results.  The third text clustering method MMOEA is based on a multi-objective evolutionary algorithm. MMOEA exploits rich features to generate a diverse set of candidate clustering solutions, and forms a better clustering solution using a cluster-oriented approach.  The fourth and the fifth text clustering method MDC and MOMVEC address the limitations of MMOEA. MDC and MOMVEC differ in terms of the implementation of their multi-objective evolutionary approaches.  All five methods are compared with existing state-of-the-art methods. The results of the comparisons show that the newly developed text clustering methods out-perform existing methods by achieving up to 16\% improvement for some comparisons. In general, almost all newly developed clustering algorithms showed statistically significant improvements over other existing methods.  The key ideas of the thesis highlight that exploiting user queries improves Search Result Clustering(SRC); utilizing rich features in weighting schemes and distance measures improves soft subspace clustering; utilizing multiple views and a multi-objective cluster oriented method improves clustering ensemble methods; and better evolutionary operators and objective functions improve multi-objective evolutionary clustering ensemble methods.  The new text clustering methods introduced in this thesis can be widely applied in various domains that involve analysis of text data. The contributions of this thesis which include five new text clustering methods, will not only help researchers in the data mining field but also to help a wide range of researchers in other fields.</p>


2018 ◽  
Author(s):  
Biao Zhang ◽  
Quan-ke Pan ◽  
Liang Gao ◽  
Yao-bang Zhao

In this paper, a multi-objective hybrid flowshop rescheduling problem (HFRP) is addressed in a dynamic shop environment where two types of real-time events, namely machine breakdown and job cancellation, simultaneously happen. For the addressed problem, two objectives are considered. One objective concerning the production efficiency is minimizing the maximum completion time or makespan, while regarding with the instability, the total number of the jobs assigned to different machines between the revised and the origin schedule is considered. A multi-objective evolutionary algorithm based on decomposition (MOEA/D) is applied to solve this problem. In the algorithm, the weighted sum approach is used as the decomposition strategy. The algorithm is, then, rigorously compared with three state-of-the-art evolutionary multi-objective optimizers, and the computational results demonstrate the effectiveness and efficiency of the algorithm.


Author(s):  
Kai Shi ◽  
Huiqun Yu ◽  
Jianmei Guo ◽  
Guisheng Fan ◽  
Liqiong Chen ◽  
...  

Multi-objective evolutionary algorithm (MOEA) has been widely applied to software product lines (SPLs) for addressing the configuration optimization problems. For example, the state-of-the-art SMTIBEA algorithm extends the constraint expressiveness and supports richer constraints to better address these problems. However, it just works better than the competitor for four out of five SPLs in five objectives and the convergence speed is not significantly increased for largest Linux SPL from 5 to 30[Formula: see text]min. To further improve the optimization efficiency, we propose a parallel framework SMTPORT, which combines four corresponding SMTIBEA variants and performs these variants by utilizing parallelization techniques within the limited time budget. For case studies in LVAT repository, we conduct a series of experiments on seven real-world and highly-constrained SPLs. Empirical results demonstrate that our approach significantly outperforms the state-of-the-art for all the seven SPLs in terms of a quality Hypervolume metric and a diversity Pareto Front Size indicator.


Author(s):  
Peng Wang ◽  
Changsheng Zhang ◽  
Bin Zhang ◽  
Tingting Liu ◽  
Jiaxuan Wu

Multiobjective density driven evolutionary algorithm (MODdEA) has been quite successful in solving multiobjective optimization problems (MOPs). To further improve its performance and address its deficiencies, this paper proposes a hybrid evolutionary algorithm based on dimensional diversity (DD) and firework explosion (FE). DD is defined to reflect the diversity degree of population dimension. Based on DD, a selection scheme is designed to balance diversity and convergence. A hybrid variation based on FE and genetic operator is designed to facilitate diversity of population. The proposed algorithm is tested on 14 tests problems with diverse characteristics and compared with three state-of-the-art designs. Experimental results show that the proposed design is better or at par with the chosen state-of-the-art algorithms for multiobjective optimization.


2015 ◽  
Vol 24 (05) ◽  
pp. 1550067 ◽  
Author(s):  
Huseyin Kusetogullari ◽  
Md. Haidar Sharif ◽  
Mark S. Leeson ◽  
Turgay Celik

The need of effective packet transmission to deliver advanced performance in wireless networks creates the need to find shortest network paths efficiently and quickly. This paper addresses a reduced uncertainty-based hybrid evolutionary algorithm (RUBHEA) to solve dynamic shortest path routing problem (DSPRP) effectively and rapidly. Genetic algorithm (GA) and particle swarm optimization (PSO) are integrated as a hybrid algorithm to find the best solution within the search space of dynamically changing networks. Both GA and PSO share context of individuals to reduce uncertainty in RUBHEA. Various regions of search space are explored and learned by RUBHEA. By employing a modified priority encoding method, each individual in both GA and PSO are represented as a potential solution for DSPRP. A complete statistical analysis has been performed to compare the performance of RUBHEA with various state-of-the-art algorithms. It shows that RUBHEA is considerably superior (reducing the failure rate by up to 50%) to similar approaches with increasing number of nodes encountered in the networks.


2020 ◽  
Vol 34 (04) ◽  
pp. 3267-3274
Author(s):  
Chao Bian ◽  
Chao Feng ◽  
Chao Qian ◽  
Yang Yu

In this paper, we study the problem of selecting a subset from a ground set to maximize a monotone objective function f such that a monotone cost function c is bounded by an upper limit. State-of-the-art algorithms include the generalized greedy algorithm and POMC. The former is an efficient fixed time algorithm, but the performance is limited by the greedy nature. The latter is an anytime algorithm that can find better subsets using more time, but without any polynomial-time approximation guarantee. In this paper, we propose a new anytime algorithm EAMC, which employs a simple evolutionary algorithm to optimize a surrogate objective integrating f and c. We prove that EAMC achieves the best known approximation guarantee in polynomial expected running time. Experimental results on the applications of maximum coverage, influence maximization and sensor placement show the excellent performance of EAMC.


Sign in / Sign up

Export Citation Format

Share Document