Selection of Young Animal Models of Autism over Adult: Benefits and Limitations

Author(s):  
Raju Paudel ◽  
Shamsher Singh

Molecules ◽  
2021 ◽  
Vol 26 (14) ◽  
pp. 4221
Author(s):  
Aage Kristian Olsen Alstrup ◽  
Svend Borup Jensen ◽  
Ole Lerberg Nielsen ◽  
Lars Jødal ◽  
Pia Afzelius

The development of new and better radioactive tracers capable of detecting and characterizing osteomyelitis is an ongoing process, mainly because available tracers lack selectivity towards osteomyelitis. An integrated part of developing new tracers is the performance of in vivo tests using appropriate animal models. The available animal models for osteomyelitis are also far from ideal. Therefore, developing improved animal osteomyelitis models is as important as developing new radioactive tracers. We recently published a review on radioactive tracers. In this review, we only present and discuss osteomyelitis models. Three ethical aspects (3R) are essential when exposing experimental animals to infections. Thus, we should perform experiments in vitro rather than in vivo (Replacement), use as few animals as possible (Reduction), and impose as little pain on the animal as possible (Refinement). The gain for humans should by far exceed the disadvantages for the individual experimental animal. To this end, the translational value of animal experiments is crucial. We therefore need a robust and well-characterized animal model to evaluate new osteomyelitis tracers to be sure that unpredicted variation in the animal model does not lead to a misinterpretation of the tracer behavior. In this review, we focus on how the development of radioactive tracers relies heavily on the selection of a reliable animal model, and we base the discussions on our own experience with a porcine model.



2021 ◽  
Author(s):  
Deependra Mishra ◽  
John Wang ◽  
Steven T. Wang ◽  
Qian Cao ◽  
Helena Hurbon ◽  
...  


2021 ◽  
pp. 7-26
Author(s):  
D. Blanset ◽  
M. Di Piazza ◽  
E. Musvasva
Keyword(s):  




2009 ◽  
Vol 5 (9) ◽  
pp. 655-663 ◽  
Author(s):  
Joshua A Kritzer ◽  
Shusei Hamamichi ◽  
J Michael McCaffery ◽  
Sandro Santagata ◽  
Todd A Naumann ◽  
...  


2019 ◽  
Vol 9 (1-s) ◽  
pp. 472-475 ◽  
Author(s):  
Mudasir Maqbool ◽  
Mohmad Amin Dar ◽  
Imran Gani ◽  
Suhail Ahmad Mir

Diabetes mellitus is defined as a state in which homeostasis of carbohydrate and lipid metabolism is improperly regulated by insulin. This results primarily in elevated fasting and postprandial blood glucose levels. If this imbalanced homeostasis dose not returns to normalcy and continues for a protracted period of time, it leads to hyperglycemia, which in due course turns into a syndrome called diabetes mellitus. Several animal models have been developed for studying diabetes mellitus or testing anti-diabetic agents. These models include chemical, surgical (pancreatectomy) and genetic manipulations in several animal species to induce diabetes mellitus. The diabetogenic drugs used include: Alloxan monohydrate, Streptozotocin with or without nicotinamide, Ferric nitrilotriacetate, Ditizona and Anti-insulin serum. The selection of these models to use for investigating the antidiabetic properties of a new compound may be a very difficult task especially for young researchers. The aim of the present review is give a brief idea about various experimental models developed for studying diabetes mellitus, assess the merits and demerits of each model and highlight the precautions needed to avoid erroneous results during the applications of these models. Keywords: Diabetes Mellitus, Animal models, Alloxan, Streptozotocin.



2019 ◽  
Vol 93 (19) ◽  
Author(s):  
Raphael Wolfisberg ◽  
Kenn Holmbeck ◽  
Louise Nielsen ◽  
Amit Kapoor ◽  
Charles M. Rice ◽  
...  

ABSTRACT Animal hepaciviruses represent promising surrogate models for hepatitis C virus (HCV), for which there are no efficient immunocompetent animal models. Experimental infection of laboratory rats with rodent hepacivirus isolated from feral Rattus norvegicus (RHV-rn1) mirrors key aspects of HCV infection in humans, including chronicity, hepatitis, and steatosis. Moreover, RHV has been adapted to infect immunocompetent laboratory mice. RHV in vitro systems have not been developed but would enable detailed studies of the virus life cycle crucial for designing animal experiments to model HCV infection. Here, we established efficient RHV-rn1 selectable subgenomic replicons with and without reporter genes. Rat and mouse liver-derived cells did not readily support the complete RHV life cycle, but replicon-containing cell clones could be selected with and without acquired mutations. Replication was significantly enhanced by mutations in NS4B and NS5A and in cell clones cured of replicon RNA. These mutations increased RHV replication of both mono- and bicistronic constructs, and CpG/UpA-dinucleotide optimization of reporter genes allowed replication. Using the replicon system, we show that the RHV-rn1 NS3-4A protease cleaves a human mitochondrial antiviral signaling protein reporter, providing a sensitive readout for virus replication. RHV-rn1 replication was inhibited by the HCV polymerase inhibitor sofosbuvir and high concentrations of HCV NS5A antivirals but not by NS3 protease inhibitors. The microRNA-122 antagonist miravirsen inhibited RHV-rn1 replication, demonstrating the importance of this HCV host factor for RHV. These novel RHV in vitro systems will be useful for studies of tropism, molecular virology, and characterization of virus-host interactions, thereby providing important complements to in vivo systems. IMPORTANCE A vaccine against hepatitis C virus (HCV) is crucial for global control of this important pathogen, which induces fatal human liver diseases. Vaccine development has been hampered by the lack of immunocompetent animal models. Discovery of rodent hepacivirus (RHV) enabled establishment of novel surrogate animal models. These allow robust infection and reverse genetic and immunization studies of laboratory animals, which develop HCV-like chronicity. Currently, there are no RHV in vitro systems available to study tropism and molecular virology. Here, we established the first culture systems for RHV, recapitulating the intracellular phase of the virus life cycle in vitro. These replicon systems enabled identification of replication-enhancing mutations and selection of cells highly permissive to RHV replication, which allow study of virus-host interactions. HCV antivirals targeting NS5A, NS5B, and microRNA-122 efficiently inhibited RHV replication. Hence, several important aspects of HCV replication are shared by the rodent virus system, reinforcing its utility as an HCV model.



Sign in / Sign up

Export Citation Format

Share Document