Observed effects of particles nonsphericity on the retrieval of marine and desert dust aerosol optical depth by lidar

2002 ◽  
Vol 61 (1) ◽  
pp. 1-14 ◽  
Author(s):  
G.P Gobbi ◽  
F Barnaba ◽  
M Blumthaler ◽  
G Labow ◽  
J.R Herman
2017 ◽  
Author(s):  
Emmanouil Proestakis ◽  
Vassilis Amiridis ◽  
Eleni Marinou ◽  
Aristeidis K. Georgoulias ◽  
Stavros Solomos ◽  
...  

Abstract. We present a 3-D climatology of the desert dust distribution over South-East Asia derived using CALIPSO (Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation) data. To distinguish desert dust from total aerosol load we apply a methodology developed in the framework of EARLINET (European Aerosol Research Lidar Network), the particle linear depolarization ratio and updated lidar ratio values suitable for Asian dust, on multiyear CALIPSO observations (01/2007–12/2015). The resulting dust product provides information on the horizontal and vertical distribution of dust aerosols over SE (South-East) Asia along with the seasonal transition of dust transport pathways. Persistent high D_AOD (Dust Aerosol Optical Depth) values, of the order of 0.6, are present over the arid and semi-arid desert regions. Dust aerosol transport (range, height and intensity) is subject to high seasonality, with highest values observed during spring for northern China (Taklimakan/Gobi deserts) and during summer over the Indian subcontinent (Thar Desert). Additionally we decompose the CALIPSO AOD (Aerosol Optical Depth) into dust and non-dust aerosol components to reveal the non-dust AOD over the highly industrialized and densely populated regions of SE Asia, where the non-dust aerosols yield AOD values of the order of 0.5. Furthermore, the CALIPSO-based short-term AOD and D_AOD time series and trends between 01/2007 and 12/2015 are calculated over SE Asia and over selected sub-regions. Positive trends are observed over northwest and east China and the Indian subcontinent, whereas over southeast China are mostly negative. The calculated AOD trends agree well with the trends derived from Aqua/MODIS (Moderate Resolution Imaging Spectroradiometer), although significant differences are observed over specific regions.


2018 ◽  
Vol 18 (2) ◽  
pp. 1337-1362 ◽  
Author(s):  
Emmanouil Proestakis ◽  
Vassilis Amiridis ◽  
Eleni Marinou ◽  
Aristeidis K. Georgoulias ◽  
Stavros Solomos ◽  
...  

Abstract. We present a 3-D climatology of the desert dust distribution over South and East Asia derived using CALIPSO (Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation) data. To distinguish desert dust from total aerosol load we apply a methodology developed in the framework of EARLINET (European Aerosol Research Lidar Network). The method involves the use of the particle linear depolarization ratio and updated lidar ratio values suitable for Asian dust, applied to multiyear CALIPSO observations (January 2007–December 2015). The resulting dust product provides information on the horizontal and vertical distribution of dust aerosols over South and East Asia along with the seasonal transition of dust transport pathways. Persistent high D_AOD (dust aerosol optical depth) values at 532 nm, of the order of 0.6, are present over the arid and semi-arid desert regions. Dust aerosol transport (range, height and intensity) is subject to high seasonality, with the highest values observed during spring for northern China (Taklimakan and Gobi deserts) and during summer over the Indian subcontinent (Thar Desert). Additionally, we decompose the CALIPSO AOD (aerosol optical depth) into dust and non-dust aerosol components to reveal the non-dust AOD over the highly industrialized and densely populated regions of South and East Asia, where the non-dust aerosols yield AOD values of the order of 0.5. Furthermore, the CALIPSO-based short-term AOD and D_AOD time series and trends between January 2007 and December 2015 are calculated over South and East Asia and over selected subregions. Positive trends are observed over northwest and east China and the Indian subcontinent, whereas over southeast China trends are mostly negative. The calculated AOD trends agree well with the trends derived from Aqua MODIS (Moderate Resolution Imaging Spectroradiometer), although significant differences are observed over specific regions.


2021 ◽  
Author(s):  
Robert Scheele ◽  
Stephanie Fiedler

<p>Renewable energy produced by photovoltaic (PV) power plants strongly depends on the meteorological conditions. Desert-dust aerosols impair the radiative transfer in the atmosphere, but their effect on PV power is poorly understood from a climatological perspective. Past climate model simulations are known to have a large spread in dust-aerosol loading. With the new CMIP6 model simulations now being available, we revisit the climate-model spread in representing desert-dust aerosols for 1985 to 2014, assess the dust-aerosol changes until 2100, and estimate the associated differences in the PV power potential. To this end, we evaluate the dust aerosol optical depth (DOD) in the CMIP6 historical simulations using modern reanalysis and satellite data. Our results highlight the persistent model spread for DOD in CMIP6, but a multi-model mean DOD close to the reanalysis and satellite data. We identify only slight changes in both the global and regional mean DOD in a green scenario (ssp126) at the end of the 21st century. For a future with continued strong warming (ssp245, ssp585), the simulations suggest an increase (decrease) in regional DOD associated with North-African, Transatlantic transport, and Australia (Taklamakan Desert) dust emissions. The differences in simulated DOD imply changes in the PV power potential for regions affected by dust aerosols. We compute the change in the PV power potential from surface irradiance, temperature, and wind speed in the CMIP6 scenarios against present-day. Our results point to a PV power potential for North Africa that is similarly affected by a future increase in temperature and decrease in irradiance associated with more dust aerosols. In mid-latitude regions of the northern hemisphere, a future change in PV power potential is controlled by changes of clouds and temperature. Our PV power estimates underline the impacts of the model uncertainty in DOD, the degree of future warming, and the unclear response of clouds and circulation to the warming.</p>


2006 ◽  
Vol 6 (3) ◽  
pp. 697-713 ◽  
Author(s):  
G. Pace ◽  
A. di Sarra ◽  
D. Meloni ◽  
S. Piacentino ◽  
P. Chamard

Abstract. Aerosol optical depth and Ångström exponent were obtained from multi filter rotating shadowband radiometer (MFRSR) observations carried out at the island of Lampedusa, in the Central Mediterranean, in the period July 2001–September 2003. The average aerosol optical depth at 495.7 nm, τ, is 0.24±0.14; the average Ångström exponent, α, is 0.86±0.63. The observed values of τ range from 0.03 to 1.13, and the values of α vary from −0.32 to 2.05, indicating a large variability in aerosol content and size. In cloud-free conditions, 36% of the airmasses come from Africa, 25% from Central-Eastern Europe, and 19% from Western France, Spain and the North Atlantic. In summer, 42% of the airmasses is of African origin. In almost all cases African aerosols display high values of τ and low values of α, typical of Saharan dust (average values of τ and α are 0.36 and 0.42, respectively). Particles originating from Central-Eastern Europe show relatively large average values of τ and α (0.23 and 1.5, respectively), while particles from Western France, Spain and the North Atlantic show the lowest average values of τ (0.15), and relatively small values of α (0.92). Intermediate values of α are often connected with relatively fast changes of the airmass originating sector, suggesting the contemporary presence of different types of particles in the air column. Clean marine conditions are rare at Lampedusa, and are generally associated with subsidence of the airmasses reaching the island. Average values of τ and α for clean marine conditions are 0.11 and 0.86, respectively. The largest values of α (about 2) were observed in August 2003, when large scale forest fires in Southern Europe produced consistent amounts of fine combustion particles, that were transported to the Central Mediterranean by a persistent high pressure system over Central Europe. Smoke particles in some cases mix with desert dust, producing intermediate values of α. The seasonal distribution of the meteorological patterns over the Mediterranean, the efficiency of the aerosol production mechanisms, and the variability of the particles' residence time produce a distinct seasonal cycle of aerosol optical depths and Ångström exponent values. Particles originating from all sectors show a summer maximum in aerosol optical depth. The summer increase in optical depth for European aerosols is linked with an increment in the values of α, that indicates an enhancement in the number of fine particles. The summer maximum of τ for African particles is associated with a weak reduction in the Ångström exponent, suggesting an increase in the total number of particles and a relatively more intense transport of large particles. The observations were classified according to the aerosol optical properties, and two main classes have been identified: desert dust and biomass burning/urban-industrial aerosols. Values of τ and α averaged over the whole observing period are 0.37 and 0.15 for desert dust, and 0.27 and 1.77 for urban-industrial/biomass burning aerosols.


2019 ◽  
Vol 99 ◽  
pp. 01003
Author(s):  
Athina Avgousta Floutsi ◽  
Marios Bruno Korras Carraca ◽  
Christos Matsoukas ◽  
Nikos Hatzianastassiou ◽  
George Biskos

Central and South Asia are regions of particular interest for studying atmospheric aerosols, being among the largest sources of desert dust aerosols globally. In this study we use the newest collection (C061) of MODIS - Aqua aerosol optical depth (AOD) at 550 nm and Ångström exponent (a) at 412/470 nm over the 15-year period between 2002 and 2017, providing the longest analyzed dataset for this region. According to our results, during spring and summer, high aerosol load (AOD up to 1.2) consisting of coarse desert dust particles, as indicated by a values as low as 0.15, is observed over the Taklamakan, Thar and Registan deserts and the region between the Aral and Caspian seas. The dust load is much lower during winter and autumn (lower AOD and higher a values compared to the other seasons). The interannual variation of AOD and a suggests that the dust load exhibits large decreasing trends (AOD slopes down to -0.22, a slopes up to 0.47 decade-1) over the Thar desert and large increasing trends between the Aral and Caspian seas (AOD and a slopes up to 0.23 decade-1 and down to -0.61 decade-1, respectively.) The AOD data are evaluated against AERONET surface-based measurements. Generally, MODIS and AERONET data are in good agreement with a correlation coefficient (R) equal to 0.835.


Tellus B ◽  
2009 ◽  
Vol 61 (1) ◽  
pp. 216-228 ◽  
Author(s):  
C. Toledano ◽  
M. Wiegner ◽  
M. Garhammer ◽  
M. Seefeldner ◽  
J. Gasteiger ◽  
...  

2013 ◽  
Vol 6 (10) ◽  
pp. 2577-2591 ◽  
Author(s):  
S. Vandenbussche ◽  
S. Kochenova ◽  
A. C. Vandaele ◽  
N. Kumps ◽  
M. De Mazière

Abstract. Desert dust aerosols are the most prominent tropospheric aerosols, playing an important role in the earth's climate. However, their radiative forcing is currently not known with sufficient precision to even determine its sign. The sources of uncertainty are multiple, one of them being a poor characterisation of the dust aerosol's vertical profile on a global scale. In this work, we tackle this scientific issue by designing a method for retrieving dust aerosol vertical profiles from Thermal Infrared measurements by Infrared Atmospheric Sounding Interferometer (IASI) instruments onboard the Metop satellite series. IASI offers almost global coverage twice a day, and long (past and future) time series of radiances, therefore being extremely well suited for climate studies. Our retrieval follows Rodger's formalism and is based on a two-step approach, treating separately the issues of low altitude sensitivity and difficult a priori definition. We compare our results for a selected test case above the Atlantic Ocean and North Africa in June 2009, with optical depth data from MODIS, aerosol absorbing index from GOME-2 and OMI, and vertical profiles of extinction coefficients from CALIOP. We also use literature information on desert dust sources to interpret our results above land. Our retrievals provide perfectly reasonable results in terms of optical depth. The retrieved vertical profiles (with on average 1.5 degrees of freedom) show most of the time sensitivity down to the lowest layer, and agree well with CALIOP extinction profiles for medium to high dust optical depth. We conclude that this new method is extremely promising for improving the scientific knowledge about the 3-D distribution of desert dust aerosols in the atmosphere.


2018 ◽  
Author(s):  
Sung-Kyun Shin ◽  
Matthias Tesche ◽  
Detlef Müller ◽  
Youngmin Noh

Abstract. Absorption aerosol optical depth (AAOD) as obtained from sun/sky photometer measurements provides a measure of the light-absorbing properties of the columnar aerosol loading. However, it is not an unambiguous, aerosol-type specific parameter, particularly if several types of absorbing aerosols, for instance black carbon (BC) and mineral dust, are present in a mixed aerosol plume. The contribution of mineral dust to total aerosol light-absorption is particularly important at UV wavelengths. In this study we refine a lidar-based technique for the separation of dust and non-dust aerosol types for the use with Aerosol Robotic Network (AERONET) direct sun and inversion products. We extend the methodology to retrieve AAOD related to non-dust aerosol (AAODnd) and BC (AAODBC). We test the method at selected AERONET sites that are frequently affected by aerosol plumes that contain a mixture of Saharan or Asian mineral dust and biomass-burning smoke or anthropogenic pollution, respectively. We find that aerosol optical depth (AOD) related to mineral dust as obtained with our methodology is frequently smaller than coarse-mode AOD. This suggests that the latter is not an ideal proxy for estimating the contribution of mineral dust to mixed dust plumes. We present the results of the AAODBC retrieval for the selected AERONET sites and compare them to coincident values provided in the Copernicus Atmospheric Monitoring System aerosol re-analysis. We find that modelled and AERONET AAODBC are most consistent for Asian sites or at Saharan sites with strong local anthropogenic sources.


2021 ◽  
Author(s):  
Jasper F. Kok ◽  
Adeyemi A. Adebiyi ◽  
Samuel Albani ◽  
Yves Balkanski ◽  
Ramiro Checa-Garcia ◽  
...  

Abstract. Even though desert dust is the most abundant aerosol by mass in Earth's atmosphere, the relative contributions of the world’s major dust source regions to the global dust cycle remain poorly constrained. This problem hinders accounting for the potentially large impact of regional differences in dust properties on clouds, the Earth's energy balance, and terrestrial and marine biogeochemical cycles. Here, we constrain the contribution of each of the world’s main dust source regions to the global dust cycle. We use an analytical framework that integrates an ensemble of global model simulations with observationally informed constraints on the dust size distribution, extinction efficiency, and regional dust aerosol optical depth. We obtain a data set that constrains the relative contribution of each of nine major source regions to size-resolved dust emission, atmospheric loading, optical depth, concentration, and deposition flux. We find that the 22–29 Tg (one standard error range) global loading of dust with geometric diameter up to 20 μm is partitioned as follows: North African source regions contribute ~50 % (11–15 Tg), Asian source regions contribute ~40 % (8–13 Tg), and North American and Southern Hemisphere regions contribute ~10 % (1.8–3.2 Tg). Current models might on average be overestimating the contribution of North African sources to atmospheric dust loading at ~65 %, while underestimating the contribution of Asian dust at ~30 %. However, both our results and current models could be affected by unquantified biases, such as due to errors in separating dust aerosol optical depth from that produced by other aerosol species in remote sensing retrievals in poorly observed desert regions. Our results further show that each source region's dust loading peaks in local spring and summer, which is partially driven by increased dust lifetime in those seasons. We also quantify the dust deposition flux to the Amazon rainforest to be ~10 Tg/year, which is a factor of 2–3 less than inferred from satellite data by previous work that likely overestimated dust deposition by underestimating the dust mass extinction efficiency. The data obtained in this paper can be used to obtain improved constraints on dust impacts on clouds, climate, biogeochemical cycles, and other parts of the Earth system.


Sign in / Sign up

Export Citation Format

Share Document