scholarly journals A rock physics model for the characterization of organic-rich shale from elastic properties

2015 ◽  
Vol 12 (2) ◽  
pp. 264-272 ◽  
Author(s):  
Ying Li ◽  
Zhi-Qi Guo ◽  
Cai Liu ◽  
Xiang-Yang Li ◽  
Gang Wang
Geophysics ◽  
2016 ◽  
Vol 81 (4) ◽  
pp. D453-D464 ◽  
Author(s):  
Hui Li ◽  
Luanxiao Zhao ◽  
De-Hua Han ◽  
Min Sun ◽  
Yu Zhang

We have investigated the elastic properties of heavy oil sands influenced by the multiphase properties of heavy oil itself and the solid matrix with regard to temperature, pressure, and microstructure. To separately identify the role of the heavy oil and solid matrix under specific conditions, we have designed and performed special ultrasonic measurements for the heavy oil and heavy oil-saturated solids artificial samples. The measured data indicate that the viscosity of heavy oil reaches [Formula: see text] at the temperature of glass point, leading the heavy oil to act as a part of a solid frame of the heavy oil sand sample. The heavy oil is likely movable pore fluid accordingly once its viscosity dramatically drops to approximately [Formula: see text] at the temperature of liquid point. The viscosity-induced elastic modulus of heavy oil in turn makes the elastic properties of heavy oil-saturated grain solid sample to be temperature dependent. In addition, the rock physics model suggests that the microstructure of heavy oil sand is transitional; consequently, the solid Gassmann equation underestimates the measured velocities at the low temperature range of the quasisolid phase of heavy oil, whereas overestimates when the temperature exceeds the liquid point. The heavy oil sand sample has a higher modulus and approaches the upper bound due to the stiffer heavy oil itself acting as a rock frame as the temperature decreases. In contrary, heavy oil sand displays a lower modulus and approaches the lower bound when the heavy oil becomes softer as the temperature goes up.


Geophysics ◽  
2017 ◽  
Vol 82 (3) ◽  
pp. MR75-MR88 ◽  
Author(s):  
Jack Dvorkin ◽  
Uri Wollner

Rock-physics “velocity-porosity” transforms are usually established on sets of laboratory and/or well data with the latter data source being dominant in recent practice. The purpose of establishing such transforms is to (1) conduct forward modeling of the seismic response for various geologically plausible “what if” scenarios in the subsurface and (2) interpret seismic data for petrophysical properties and conditions, such as porosity, clay content, and pore fluid. Because the scale of investigation in the well is considerably smaller than that in reflection seismology, an important question is whether the rock-physics model established in the well can be used at the seismic scale. We use synthetic examples and well data to show that a rock-physics model established at the well approximately holds at the seismic scale, suggest a reason for this scale independence, and explore where it may be violated. The same question can be addressed as an inverse problem: Assume that we have a rock-physics transform and know that it works at the scale of investigation at which the elastic properties are seismically measured. What are the upscaled (smeared) petrophysical properties and conditions that these elastic properties point to? It appears that they are approximately the arithmetically volume-averaged porosity and clay content (in a simple quartz/clay setting) and are close to the arithmetically volume-averaged bulk modulus of the pore fluid (rather than averaged saturation).


2021 ◽  
Vol 8 ◽  
Author(s):  
Jack Dvorkin ◽  
Joel Walls ◽  
Gabriela Davalos

By examining wireline data from Woodford and Wolfcamp gas shale, we find that the primary controls on the elastic-wave velocity are the total porosity, kerogen content, and mineralogy. At a fixed porosity, both Vp and Vs strongly depend on the clay content, as well as on the kerogen content. Both velocities are also strong functions of the sum of the above two components. Even better discrimination of the elastic properties at a fixed porosity is attained if we use the elastic-wave velocity of the solid matrix (including kerogen) of rock as the third variable. This finding, fairly obvious in retrospect, helps combine all mineralogical factors into only two variables, Vp and Vs of the solid phase. The constant-cement rock physics model, whose mathematical form is the modified lower Hashin-Shtrikman elastic bound, accurately describes the data. The inputs to this model include the elastic moduli and density of the solid component (minerals plus kerogen), those of the formation fluid, the differential pressure, and the critical porosity and coordination number (the average number of grain-to-grain contacts at the critical porosity). We show how this rock physics model can be used to predict the elastic properties from digital images of core, as well as 2D scanning electron microscope images of very small rock fragments.


Geophysics ◽  
2011 ◽  
Vol 76 (1) ◽  
pp. E9-E20 ◽  
Author(s):  
Erling Hugo Jensen ◽  
Charlotte Faust Andersen ◽  
Tor Arne Johansen

We have developed a procedure for estimating the effective elastic properties of various mixtures of smectite and kaolinite over a range of confining pressures, based on the individual effective elastic properties of pure porous smectite and kaolinite. Experimental data for the pure samples are used as input to various rock physics models, and the predictions are compared with experimental data for the mixed samples. We have evaluated three strategies for choosing the initial properties in various rock physics models: (1) input values have the same porosity, (2) input values have the same pressure, and (3) an average of (1) and (2). The best results are obtained when the elastic moduli of the two porous constituents are defined at the same pressure and when their volumetric fractions are adjusted based on different compaction rates with pressure. Furthermore, our strategy makes the modeling results less sensitive to the actual rock physics model. The method can help obtain the elastic properties of mixed unconsolidated clays as a function of mechanical compaction. The more common procedure for estimating effective elastic properties requires knowledge about volume fractions, elastic properties of individual constituents, and geometric details of the composition. However, these data are often uncertain, e.g., large variations in the mineral elastic properties of clays have been reported in the literature, which makes our procedure a viable alternative.


Geophysics ◽  
2011 ◽  
Vol 76 (6) ◽  
pp. E199-E209 ◽  
Author(s):  
Zakir Hossain ◽  
Tapan Mukerji ◽  
Jack Dvorkin ◽  
Ida L. Fabricius

The objective of this study was to establish a rock physics model of North Sea Paleogene greensand. The Hertz-Mindlin contact model is widely used to calculate elastic velocities of sandstone as well as to calculate the initial sand-pack modulus of the soft-sand, stiff-sand, and intermediate-stiff-sand models. When mixed minerals in rock are quite different, e.g., mixtures of quartz and glauconite in greensand, the Hertz-Mindlin contact model of single type of grain may not be enough to predict elastic velocity. Our approach is first to develop a Hertz-Mindlin contact model for a mixture of quartz and glauconite. Next, we use this Hertz-Mindlin contact model of two types of grains as the initial modulus for a soft-sand model and a stiff-sand model. By using these rock physics models, we examine the relationship between elastic modulus and porosity in laboratory and logging data and link rock-physics properties to greensand diagenesis. Calculated velocity for mixtures of quartz and glauconite from the Hertz-Mindlin contact model for two types of grains are higher than velocity calculated from the Hertz-Mindlin single mineral model using the effective mineral moduli predicted from the Hill’s average. Results of rock-physics modeling and thin-section observations indicate that variations in the elastic properties of greensand can be explained by two main diagenetic phases: silica cementation and berthierine cementation. These diagenetic phases dominate the elastic properties of greensand reservoir. Initially, greensand is a mixture of mainly quartz and glauconite; when weakly cemented, it has relatively low elastic modulus and can be modeled by a Hertz-Mindlin contact model of two types of grains. Silica-cemented greensand has a relatively high elastic modulus and can be modeled by an intermediate-stiff-sand or a stiff-sand model. Berthierine cement has different growth patterns in different parts of the greensand, resulting in a soft-sand model and an intermediate-stiff-sand model.


Sign in / Sign up

Export Citation Format

Share Document