scholarly journals Fractional order SIR epidemic model with Beddington–De Angelis incidence and Holling type II treatment rate for COVID-19

Author(s):  
Swati ◽  
Nilam
2021 ◽  
Vol 2021 ◽  
pp. 1-7
Author(s):  
Atimad Harir ◽  
Said Malliani ◽  
Lalla Saadia Chandli

In this paper, the conformable fractional-order SIR epidemic model are solved by means of an analytic technique for nonlinear problems, namely, the conformable fractional differential transformation method (CFDTM) and variational iteration method (VIM). These models are nonlinear system of conformable fractional differential equation (CFDE) that has no analytic solution. The VIM is based on conformable fractional derivative and proved. The result revealed that both methods are in agreement and are accurate and efficient for solving systems of OFDE.


2020 ◽  
Vol 10 (23) ◽  
pp. 8316
Author(s):  
Kamil Kozioł ◽  
Rafał Stanisławski ◽  
Grzegorz Bialic

In this paper, the fractional-order generalization of the susceptible-infected-recovered (SIR) epidemic model for predicting the spread of the COVID-19 disease is presented. The time-domain model implementation is based on the fixed-step method using the nabla fractional-order difference defined by Grünwald-Letnikov formula. We study the influence of fractional order values on the dynamic properties of the proposed fractional-order SIR model. In modeling the COVID-19 transmission, the model’s parameters are estimated while using the genetic algorithm. The model prediction results for the spread of COVID-19 in Italy and Spain confirm the usefulness of the introduced methodology.


Author(s):  
Abhishek Kumar ◽  
Nilam

Abstract In this article, we propose and analyze a time-delayed susceptible–infected–recovered (SIR) mathematical model with nonlinear incidence rate and nonlinear treatment rate for the control of infectious diseases and epidemics. The incidence rate of infection is considered as Crowley–Martin functional type and the treatment rate is considered as Holling functional type II. The stability of the model is investigated for the disease-free equilibrium (DFE) and endemic equilibrium (EE) points. From the mathematical analysis of the model, we prove that the model is locally asymptotically stable for DFE when the basic reproduction number {R_0} is less than unity ({R_0} \lt 1) and unstable when {R_0} is greater than unity ({R_0} \gt 1) for time lag \tau \ge 0. The stability behavior of the model for DFE at {R_0} = 1 is investigated using Castillo-Chavez and Song theorem, which shows that the model exhibits forward bifurcation at {R_0} = 1. We investigate the stability of the EE for time lag \tau \ge 0. We also discussed the Hopf bifurcation of EE numerically. Global stability of the model equilibria is also discussed. Furthermore, the model has been simulated numerically to exemplify analytical studies.


Author(s):  
Parvaiz Ahmad Naik

In this paper, an investigation and analysis of a nonlinear fractional-order SIR epidemic model with Crowley–Martin type functional response and Holling type-II treatment rate are established along the memory. The existence and stability of the equilibrium points are investigated. The sufficient conditions for the persistence of the disease are provided. First, a threshold value, [Formula: see text], is obtained which determines the stability of equilibria, then model equilibria are determined and their stability analysis is considered by using fractional Routh-Hurwitz stability criterion and fractional La-Salle invariant principle. The fractional derivative is taken in Caputo sense and the numerical solution of the model is obtained by L1 scheme which involves the memory trace that can capture and integrate all past activity. Meanwhile, by using Lyapunov functional approach, the global dynamics of the endemic equilibrium point is discussed. Further, some numerical simulations are performed to illustrate the effectiveness of the theoretical results obtained. The outcome of the study reveals that the applied L1 scheme is computationally very strong and effective to analyze fractional-order differential equations arising in disease dynamics. The results show that order of the fractional derivative has a significant effect on the dynamic process. Also, from the results, it is obvious that the memory effect is zero for [Formula: see text]. When the fractional-order [Formula: see text] is decreased from [Formula: see text] the memory trace nonlinearly increases from [Formula: see text], and its dynamics strongly depends on time. The memory effect points out the difference between the derivatives of the fractional-order and integer order.


Author(s):  
Chandan Maji

In this work, we formulated and analyzed a fractional-order epidemic model of infectious disease (such as SARS, 2019-nCoV and COVID-19) concerning media effect. The model is based on classical susceptible-infected-recovered (SIR) model. Basic properties regarding positivity, boundedness and non-negative solutions are discussed. Basic reproduction number [Formula: see text] of the system has been calculated using next-generation matrix method and it is seen that the disease-free equilibrium is locally as well as globally asymptotically stable if [Formula: see text], otherwise unstable. The existence of endemic equilibrium point is established using the Lambert W function. The condition for global stability has been derived. Numerical simulation suggests that fractional order and media have a large effect on our system dynamics. When media impact is stronger enough, our fractional-order system stabilizes the oscillation.


2022 ◽  
Author(s):  
A. George Maria Selvam ◽  
D. Abraham Vianny ◽  
S. Britto Jacob ◽  
D. Vignesh

Sign in / Sign up

Export Citation Format

Share Document