Parameter Identification of Magic Formula Tire Model Based on Fibonacci Tree Optimization Algorithm

2021 ◽  
Vol 26 (5) ◽  
pp. 647-657
Author(s):  
Shilin Feng ◽  
Youqun Zhao ◽  
Huifan Deng ◽  
Qiuwei Wang ◽  
Tingting Chen
2010 ◽  
Vol 38 (3) ◽  
pp. 228-244 ◽  
Author(s):  
Nenggen Ding ◽  
Saied Taheri

Abstract Easy-to-use tire models for vehicle dynamics have been persistently studied for such applications as control design and model-based on-line estimation. This paper proposes a modified combined-slip tire model based on Dugoff tire. The proposed model takes emphasis on less time consumption for calculation and uses a minimum set of parameters to express tire forces. Modification of Dugoff tire model is made on two aspects: one is taking different tire/road friction coefficients for different magnitudes of slip and the other is employing the concept of friction ellipse. The proposed model is evaluated by comparison with the LuGre tire model. Although there are some discrepancies between the two models, the proposed combined-slip model is generally acceptable due to its simplicity and easiness to use. Extracting parameters from the coefficients of a Magic Formula tire model based on measured tire data, the proposed model is further evaluated by conducting a double lane change maneuver, and simulation results show that the trajectory using the proposed tire model is closer to that using the Magic Formula tire model than Dugoff tire model.


Author(s):  
Liangshun Wu ◽  
Hengjin Cai

Wireless sensor networks are attractive largely because they need no wired infrastructure. But precisely this feature makes them energy constrained. Recent studies find that sensing behaviors that are otherwise deemed efficient consume comparable energy with communication. The duty cycle scheduling is perceived as contributing to achieving energy efficiency of sensing. Because of different research assumptions and objectives, various scheduling schemes have various emphases. This paper designed an adaptive sensing scheduling strategy. The objective function of the scheduling strategy includes minimizing average energy expenditure and maximizing sensing coverage (reducing event miss-rate), and it requires relatively loose assumptions. We determine the functional relationship between the variables of the objective function and the step-size parameters of the proposed strategy through the numerical fitting. We found that the objective function aggregated by the fitting functions is a bivariate multi-peak function that favors the Fibonacci tree optimization algorithm. Once the optimization of parameters is done, the strategy can be easily deployed and behaves consistently in the coming hours. We name the proposed strategy as “FTOS”. The experimental results show that the Fibonacci tree optimization algorithm gets a better optimistic effect than the comprehensive learning particle swarm optimization (CLPSO) algorithm and differential evolution (DE) algorithm. The FTOS strategy is superior to the fixed time scheduling strategy in achieving the scheduling objectives. It also outperforms other strategies with the same scheduling objectives such as LDAS, BS, DSS and PECAS.


Sensors ◽  
2021 ◽  
Vol 21 (15) ◽  
pp. 5002
Author(s):  
Liangshun Wu ◽  
Hengjin Cai

Wireless sensor networks are appealing, largely because they do not need wired infrastructure, but it is precisely this feature that renders them energy-constrained. The duty cycle scheduling is perceived as a contributor to the energy efficiency of sensing. This paper developed a novel paradigm for modeling wireless sensor networks; in this context, an adaptive sensing scheduling strategy is proposed depending on event occurrence behavior, and the scheduling problem is framed as an optimization problem. The optimization objectives include reducing energy depletion and optimizing detection accuracy. We determine the explicit form of the objective function by numerical fitting and found that the objective function aggregated by the fitting functions is a bivariate multimodal function that favors the Fibonacci tree optimization algorithm. Then, with the optimal parameters optimized by the Fibonacci tree optimization algorithm, the scheduling scheme can be easily deployed, and it behaves consistently in the coming hours. The proposed “Fibonacci Tree Optimization Strategy” (“FTOS”) outperforms lightweight deployment-aware scheduling (LDAS), balanced-energy scheduling (BS), distributed self-spreading algorithm (DSS) and probing environment and collaborating adaptive sleeping (PECAS) in achieving the aforementioned scheduling objectives. The Fibonacci tree optimization algorithm has attained a better optimistic effect than the artificial bee colony (ABC) algorithm, differential evolution (DE) algorithm, genetic algorithm (GA) algorithm, particle swarm optimization (PSO) algorithm, and comprehensive learning particle swarm optimization (CLPSO) algorithm in multiple runs.


Sign in / Sign up

Export Citation Format

Share Document