Mechanical Properties, Thermal Conductivity, and Sound Absorption of Pervious Concrete Containing Recycled Concrete and Bottom Ash Aggregates

2018 ◽  
Vol 22 (4) ◽  
pp. 1369-1376 ◽  
Author(s):  
Chanchai Ngohpok ◽  
Vanchai Sata ◽  
Thaned Satiennam ◽  
Pongrid Klungboonkrong ◽  
Prinya Chindaprasirt
BioResources ◽  
2019 ◽  
Vol 14 (2) ◽  
pp. 3746-3757
Author(s):  
Marilia da Silva Bertolini ◽  
César Augusto Galvão de Morais ◽  
André Luis Christoforo ◽  
Stelamaris Rolla Bertoli ◽  
Wilson Nunes dos Santos ◽  
...  

The development of materials that offer environmental comfort inside buildings, through adequate thermal and acoustic behavior, has been as relevant as the search for raw materials of renewable origin. In this context, this study produced and characterized panels made with Pinus sp. waste materials, which were treated with a copper chrome boric oxide preservative and a castor-oil based polyurethane resin. The physical and mechanical properties of the panels were evaluated according to the ABNT NBR 14810 standard (2013). The panel porosity was investigated by scanning electron microscopy (SEM) and mercury intrusion porosimetry techniques. The sound absorption was analyzed by a reverberation chamber and thermal conductivity by the modified fractionated column method. Samples with a higher pressing pressure (4 MPa) during the manufacturing presented lower thickness swelling and higher mechanical properties in static bending. Panels made with a lower press pressure (2.5 MPa) resulted in a higher porosity volume (55.7%). The more highly porous panels were more acoustically efficient, with a sound absorption coefficient close to 0.8 at 3.2 kHz, and they had a better thermal conductivity performance.The potential of these panels for application where sound absorption and thermal insulation are prioritized is thus observed.


2019 ◽  
Vol 56 (4) ◽  
pp. 1021-1027
Author(s):  
Ancuta Elena Tiuc ◽  
Ovidiu Nemes ◽  
HoraŢiu VermeŞan ◽  
Daniela Roxana Tamas Gavrea ◽  
Ovidiu Vasile

Polyurethane foam wastes is one of the environmental problems for which are not still the efficient solutions of valorization. This paper presents the possibility of recovering polyurethane foam waste by obtaining some new materials with sound absorption properties. The polyurethane foam wastes were ground and mixed, in proportion of 0, 3, 5, 7 and 12 wt%, with bicomponent polyurethane foam as a binder, resulting 5 new materials. The sound-absorbing properties of the new materials have been determined and it can be observed that the sound-absorbing properties of rigid polyurethane foam with closed pores can be improved by adding polyurethane foam waste to its structure. In addition, the mechanical properties and thermal conductivity of the new materials were studied.


2012 ◽  
Vol 204-208 ◽  
pp. 4022-4025 ◽  
Author(s):  
Ya Xian Rao ◽  
Chao Feng Liang ◽  
Ying Xia

In order to develop a new building material by recycling wasted concrete and expanded polystyrene (EPS), the EPS recycled concretes of different density were designed, and their basic physical and mechanical properties were studied. The results show that the EPS recycled concrete’s fluidity and saturated bibulous rate increase with the increase of EPS volume content. However, the dry apparent density, compressive strength, split tensile strength and thermal conductivity of EPS recycled concrete decrease linearly with increased EPS volume content. When the EPS volume content is 60%, the EPS recycled concrete’s cubic compressive strength is 4.0MPa and its thermal conductivity is 0.27W/m•K. Therefore, EPS recycled concrete can be widely applied to the non load-bearing lightweight insulation masonry.


2015 ◽  
Vol 10 (2) ◽  
pp. 2663-2681
Author(s):  
Rizk El- Sayed ◽  
Mustafa Kamal ◽  
Abu-Bakr El-Bediwi ◽  
Qutaiba Rasheed Solaiman

The structure of a series of AlSb alloys prepared by melt spinning have been studied in the as melt–spun ribbons  as a function of antimony content .The stability  of these structures has  been  related to that of the transport and mechanical properties of the alloy ribbons. Microstructural analysis was performed and it was found that only Al and AlSb phases formed for different composition.  The electrical, thermal and the stability of the mechanical properties are related indirectly through the influence of the antimony content. The results are interpreted in terms of the phase change occurring to alloy system. Electrical resistivity, thermal conductivity, elastic moduli and the values of microhardness are found to be more sensitive than the internal friction to the phase changes. 


2020 ◽  
Vol 38 (10A) ◽  
pp. 1522-1530
Author(s):  
Rawnaq S. Mahdi ◽  
Aseel B. AL-Zubidi ◽  
Hassan N. Hashim

This work reports on the incorporation of Flint and Kaolin rocks powders in the cement mortar in an attempt to improve its mechanical properties and produce an eco-friendly mortar. Flint and Kaolin powders are prepared by dry mechanical milling. The two powders are added separately to the mortars substituting cement partially. The two powders are found to improve the mechanical properties of the mortars. Hardness and compressive strength are found to increase with the increase of powders constituents in the cement mortars. In addition, the two powders affect water absorption and thermal conductivity of the mortar specimens which are desirable for construction applications. Kaolin is found to have a greater effect on the mechanical properties, water absorption, and thermal conductivity of the mortars than Flint. This behavior is discussed and analyzed based on the compositional and structural properties of the rocks powders.


Sign in / Sign up

Export Citation Format

Share Document