Investigations on Creep Behavior and Fractal Derivative Constitutive Model of Sandstone under Different Drying-Wetting Cycles

Author(s):  
Tao Li ◽  
Rui Hou ◽  
Guokun Liu ◽  
Qian Han ◽  
Dingyang Li
2017 ◽  
Vol 707 ◽  
pp. 344-355 ◽  
Author(s):  
Chan Wang ◽  
Duoqi Shi ◽  
Xiaoguang Yang ◽  
Shaolin Li ◽  
Chengli Dong

Author(s):  
MINTO RATTAN ◽  
NEERAJ CHAMOLI ◽  
SATYA BIR SINGH ◽  
NISHI GUPTA

The creep behavior of an anisotropic rotating disc of functionally gradient material (FGM) has been investigated in the present study using Hill's yield criteria and the creep behavior in this case is assumed to follow Sherby's constitutive model. The stress and strain rate distributions are calculated for disc having different types of anisotropy and the results obtained are compared graphically. It is concluded that the anisotropy of the material has a significant effect on the creep behavior of the FGM disc. It is also observed that the FGM disc shows better creep behavior than the non-FGM disc.


Author(s):  
Yu Zhou ◽  
Xuedong Chen ◽  
Zhichao Fan ◽  
Peng Xu ◽  
Xiaoliang Liu

Creep properties both in hot hydrogen and in air of a vanadium-modified CrMo steel 2.25Cr1Mo0.25V, widely used in hydroprocessing reactors in petrochemical industry, were investigated to determine the effect of hydrogen on high-temperature creep behavior of the low-alloy ferritic steel. The minimum creep strain rate in hydrogen is higher than that in air, whereas the creep strain at failure in hydrogen is relatively smaller. Many tiny spherical cavities are dispersively distributed in the ruptured specimen under hydrogen, which has relatively higher Vickers hardness. Based on the thermodynamics theory, the pressure of methane generated by the so-called “methane reaction” in the vanadium-modified CrMo steel can be calculated by using corresponding thermodynamic data, assuming that methane can reach its equilibrium state during cavitation. Meanwhile, a creep constitutive model based on continuum damage mechanics (CDM) was proposed, taking methane pressure into consideration. The results show that methane pressure increases nonlinearly with increase of hydrogen pressure while it decreases gradually with increase of temperature. The constitutive model considering the damage induced by methane pressure can be used to predict the effect of hydrogen pressure and temperature on creep life, indicating that the influence of hydrogen at elevated temperatures becomes smaller when increasing temperature or decreasing hydrogen pressure.


Author(s):  
Yaocheng Zhang ◽  
Zheng Liu ◽  
Song Pang ◽  
Tao Meng ◽  
Yating Zhi ◽  
...  

2008 ◽  
Vol 22 (31n32) ◽  
pp. 5413-5418 ◽  
Author(s):  
HOLM ALTENBACH ◽  
KONSTANTIN NAUMENKO ◽  
YEVGEN GORASH

Many materials exhibit a stress range dependent creep behavior. The power-law creep observed for a certain stress range changes to the viscous type creep if the stress value decreases. Recently published experimental data for advanced heat resistant steels indicates that the high creep exponent (in the range 5-12 for the power-law behavior) may decrease to the low value of approximately 1 within the stress range relevant for engineering structures. The aim of this paper is to confirm the stress range dependence of creep behavior based on the experimental data of stress relaxation. An extended constitutive model for the minimum creep rate is introduced to consider both the linear and the power law creep ranges. To take into account the primary creep behavior a strain hardening function is introduced. The material constants are identified for published experimental data of creep and relaxation tests for a 12% Cr steel bolting material at 500°C. The data for the minimum creep rate are well-defined only for moderate and high stress levels. To reconstruct creep rates for the low stress range the data of the stress relaxation test are applied. The results show a gradual decrease of the creep exponent with the decreasing stress level. Furthermore, they illustrate that the proposed constitutive model well describes the creep rates for a wide stress range.


2011 ◽  
Vol 314-316 ◽  
pp. 1430-1434
Author(s):  
Qing Sheng Liu ◽  
Hai Feng Tang ◽  
Hui Fang

An apparatus to measure compressive creep in carbon cathode materials has been developed. Short-time creep were measured at 30°C,965°C and during aluminum electrolysis at 965°C. The creep strain increases with stress, indicating that the creep behavior is of the stress dependency. The ranking from low to high creep was at 30°C<965°C<during aluminum electrolysis at 965°C. The integral creep conctitutive mdoel were estalished based on the relevant rheological mdoel. The results indicate the proposed rheological model can discribe the creep rate at the first stage and the stady-state stage on the creep strain curves. Simultaneously, the viscous coefficents denoting the viscous behavior in visco-elastic constitutive model were determined by taking use of the creep testing data.


Sign in / Sign up

Export Citation Format

Share Document