Simultaneous multi-objective optimization of stainless steel clad layer on pressure vessels using genetic algorithm

2018 ◽  
Vol 32 (6) ◽  
pp. 2559-2568 ◽  
Author(s):  
M. Sowrirajan ◽  
P. Koshy Mathews ◽  
S. Vijayan
2019 ◽  
Vol 9 (18) ◽  
pp. 3684 ◽  
Author(s):  
Tao Zhou ◽  
Lin He ◽  
Jinxing Wu ◽  
Feilong Du ◽  
Zhongfei Zou

Establishing and controlling the prediction model of a machined surface quality is known as the basis for sustainable manufacturing. An ensemble learning algorithm—the gradient boosting regression tree—is incorporated into the surface roughness modeling. In order to address the problem of a high time cost and tendency to fall into a local optimum solution when the grid search and conjugate gradient method is adopted to obtain the super-parameters of the ensemble learning algorithm, a genetic algorithm is employed to search for the optimal super-parameters in the training process, and a genetic-gradient boosting regression tree (GA-GBRT) algorithm is developed. A fitting goodness of fit is taken as the fitness function value of the genetic algorithm and combined with k-fold cross-validation, as such, the initial model parameters of the gradient boosting regression tree are optimized. Compared to the optimized artificial neural network (ANN) and support vector regression (SVR) and combined with the cutting experiment of 304 stainless steel with a micro-groove tool, a genetic algorithm multi-objective optimization model with the highest cutting efficiency and a supreme surface quality was constructed by applying the GA-GBRT model. The response relationship reveals the non-linear interaction that occurs between the cutting parameters and the surface roughness of 304 stainless steel that is machined by the micro-groove tool. As indicated by the results obtained from the multi-objective optimization, the cutting efficiency can be enhanced by increasing the cutting speed and depth within a small range of surface quality variations. The GA-GBRT model is validated to be reliable in making a prediction of the surface roughness and optimizing the cutting parameters with turning and milling data.


Materials ◽  
2020 ◽  
Vol 13 (21) ◽  
pp. 4693
Author(s):  
Feilong Du ◽  
Lin He ◽  
Haisong Huang ◽  
Tao Zhou ◽  
Jinxing Wu

Cutting quality and production cleanliness are main aspects to be considered in the machining process, and determining the optimal cutting parameters is a significant measure to reduce energy consumption and optimize surface quality. In this paper, 304 stainless steel is adopted as the research objective. The regression models of the specific cutting energy, surface roughness, and microhardness are constructed and the inherent influence mechanism between cutting parameters and output responses are analyzed by analysis of variance (ANOVA). The desirability analysis method is introduced to perform the multi-objective optimization for low energy consumption (LEC) mode and low surface roughness (LSR) mode. Optimal combination of process parameters with composite desirability of 0.925 and 0.899 are obtained in such two modes respectively. As indicated by the results of multi-objective genetic algorithm (MOGA), genetic algorithm (GA) combined with weighted-sum-type objective function and experiment, the relative deviation values are within 10%. Moreover, the results also reveal that the feed rate is the most significant factor affecting the three responses, while the correlation of cutting depth is less noticeable. The effect of low feed rate on microhardness is primarily related to the mechanical load caused by extrusion, and the influence at high feed rate is determined by plastic deformation.


Author(s):  
Kazutoshi KURAMOTO ◽  
Fumiyasu MAKINOSHIMA ◽  
Anawat SUPPASRI ◽  
Fumihiko IMAMURA

2020 ◽  
Vol 40 (4) ◽  
pp. 360-371
Author(s):  
Yanli Cao ◽  
Xiying Fan ◽  
Yonghuan Guo ◽  
Sai Li ◽  
Haiyue Huang

AbstractThe qualities of injection-molded parts are affected by process parameters. Warpage and volume shrinkage are two typical defects. Moreover, insufficient or excessively large clamping force also affects the quality of parts and the cost of the process. An experiment based on the orthogonal design was conducted to minimize the above defects. Moldflow software was used to simulate the injection process of each experiment. The entropy weight was used to determine the weight of each index, the comprehensive evaluation value was calculated, and multi-objective optimization was transformed into single-objective optimization. A regression model was established by the random forest (RF) algorithm. To further illustrate the reliability and accuracy of the model, back-propagation neural network and kriging models were taken as comparative algorithms. The results showed that the error of RF was the smallest and its performance was the best. Finally, genetic algorithm was used to search for the minimum of the regression model established by RF. The optimal parameters were found to improve the quality of plastic parts and reduce the energy consumption. The plastic parts manufactured by the optimal process parameters showed good quality and met the requirements of production.


Author(s):  
H Sayyaadi ◽  
H R Aminian

A regenerative gas turbine cycle with two particular tubular recuperative heat exchangers in parallel is considered for multi-objective optimization. It is assumed that tubular recuperative heat exchangers and its corresponding gas cycle are in design stage simultaneously. Three objective functions including the purchased equipment cost of recuperators, the unit cost rate of the generated power, and the exergetic efficiency of the gas cycle are considered simultaneously. Geometric specifications of the recuperator including tube length, tube outside/inside diameters, tube pitch, inside shell diameter, outer and inner tube limits of the tube bundle and the total number of disc and doughnut baffles, and main operating parameters of the gas cycle including the compressor pressure ratio, exhaust temperature of the combustion chamber and the air mass flowrate are considered as decision variables. Combination of these objectives anddecision variables with suitable engineering and physical constraints (including NO x and CO emission limitations) comprises a set of mixed integer non-linear problems. Optimization programming in MATLAB is performed using one of the most powerful and robust multi-objective optimization algorithms, namely non-dominated sorting genetic algorithm. This approach is applied to find a set of Pareto optimal solutions. Pareto optimal frontier is obtained, and a final optimal solution is selected in a decision-making process.


Sign in / Sign up

Export Citation Format

Share Document