scholarly journals Bi/BiOCl Nanosheets Enriched with Oxygen Vacancies to Enhance Photocatalytic CO2 Reduction

Author(s):  
Shuqi Wu ◽  
Junbu Wang ◽  
Qingchuan Li ◽  
Zeai Huang ◽  
Zhiqiang Rao ◽  
...  

AbstractBiOCl has been used in the photoreduction of CO2, but exhibits limited photocatalytic activity. In this study, Bi was in situ reduced and deposited on the surface of (001)-dominated BiOCl nanosheets by NaBH4 to form Bi/BiOCl nanosheets enriched with oxygen vacancies. The as-prepared Bi/BiOCl nanosheets having low thickness (ca. 10 nm) showed much higher concentration of oxygen vacancies compared to Bi/BiOCl nanoplates having high thickness (ca. 100 nm). Subsequently, the photocatalytic activity of the Bi/BiOCl nanosheets enriched with oxygen vacancies for CO2 reduction was dramatically enhanced and much higher than that of BiOCl nanoplates, nanosheets, and Bi/BiOCl nanoplates. It showed that the improved photocatalytic activity in the reduction of CO2 can be attributed to the enhanced separation efficiency of photogenerated electron–hole pairs of the oxygen vacancies on BiOCl nanosheets and Bi metals. This work demonstrated that the in situ reduction of non-noble metals on the surface of BiOCl nanosheets that are enriched with oxygen vacancies is favorable for increasing photocatalytic CO2 reduction.


RSC Advances ◽  
2015 ◽  
Vol 5 (35) ◽  
pp. 27933-27939 ◽  
Author(s):  
Qingyan Nong ◽  
Min Cui ◽  
Hongjun Lin ◽  
Leihong Zhao ◽  
Yiming He

The coupling of FeVO4 nanorods with g-C3N4 promotes the separation efficiency of photogenerated electron–hole pairs, and subsequently enhances its photocatalytic activity in rhodamine photodegradation.



RSC Advances ◽  
2015 ◽  
Vol 5 (115) ◽  
pp. 94887-94894 ◽  
Author(s):  
Meng Wang ◽  
Ziyu Qiao ◽  
Minghao Fang ◽  
Zhaohui Huang ◽  
Yan'gai Liu ◽  
...  

1.5% Bi2WO6:Er3+ exhibited highest photocatalytic activity as the separation efficiency of the photogenerated electron–hole pairs is enhanced.



2021 ◽  
Author(s):  
Xiaojun Dai ◽  
sheng feng ◽  
Wei Wu ◽  
Yun Zhou ◽  
Zhiwei Ye ◽  
...  

Abstract In this paper, in order to improved the photocatalytic activity of Bi2WO6, Bi2WO6 and ZIF-8 were successfully combined by in-situ growth method for the first time. The addition of ZIF-8 effectively inhibited the recombination of photogenerated electron hole pairs and further improved the electron utilization efficiency, and superoxide anion was introduced to greatly improve the photocatalytic activity. The performance of Bi2WO6/ZIF-8 in the photodegradation of tetracycline (TC) was studied under different conditions of proportions of ZIF-8, dosage of catalyst and concentration of TC. The results indicated that B/Z/5/1 (10mg) had the best photocatalytic activity, and 97.8% of TC (20mg/L) could be degraded in 80 minutes under UV light, the rate constant (k) for TC degradation was almost 3 times that of Bi2WO6. The effects of pH, HA and inorganic anions on the degradation of TC were studied in simulated real water. Further, B/Z/5/1 could be reutilized up to five cycles without reduction of efficiency and catalysis performance. Therefore, Bi2WO6/ZIF-8 heterojunction composite material can be utilized as an efficient photocatalyst for remediation of environmental pollution.



Nanomaterials ◽  
2019 ◽  
Vol 9 (7) ◽  
pp. 959 ◽  
Author(s):  
Xiaojuan Chen ◽  
Chunmu Yu ◽  
Runliang Zhu ◽  
Ning Li ◽  
Jieming Chen ◽  
...  

CuBi2O4/Ag3PO4 was synthesized through a combination of hydrothermal synthesis and an in situ deposition method with sodium stearate as additives, and their textures were characterized with XRD, XPS, SEM/HRTEM, EDS, UV-Vis, and PL. Then, the photodegradation performance of CuBi2O4/Ag3PO4 toward the degradation of diclofenac sodium (DS) was investigated, and the results indicate that the degradation rate of DS in a CuBi2O4/Ag3PO4 (1:1) system is 0.0143 min−1, which is 3.6 times that in the blank irradiation system. Finally, the photocatalytic mechanism of CuBi2O4/Ag3PO4 was discussed, which follows the Z-Scheme theory, and the performance enhancement of CuBi2O4/Ag3PO4 was attributed to the improved separation efficiency of photogenerated electron–hole pairs.



Catalysts ◽  
2020 ◽  
Vol 10 (6) ◽  
pp. 654
Author(s):  
Ziyi Wang ◽  
Wei Zhou ◽  
Xin Wang ◽  
Xueliang Zhang ◽  
Huayu Chen ◽  
...  

The photocatalytic reduction of carbon dioxide (CO2) into CO and hydrocarbon fuels has been considered as an ideal green technology for solar-to-chemical energy conversion. The separation/transport of photoinduced charge carriers and adsorption/activation of CO2 molecules play crucial roles in photocatalytic activity. Herein, tetrakis (4-carboxyphenyl) porphyrin (H2TCPP) was incorporated with different metal atoms in the center of a conjugate macrocycle, forming the metalloporphyrins TCPP-M (M = Co, Ni, Cu). The as-obtained metalloporphyrin was loaded as a cocatalyst on commercial titania (P25) to form TCPP-M@P25 (M = Co, Ni, Cu) for enhanced CO2 photoreduction. Among all of the TCPP-M@P25 (M = Co, Ni, Cu), TCPP-Cu@P25 exhibited the highest evolution rates of CO (13.6 μmol⋅g−1⋅h−1) and CH4 (1.0 μmol⋅g−1⋅h−1), which were 35.8 times and 97.0 times those of bare P25, respectively. The enhanced photocatalytic activity could be attributed to the improved photogenerated electron-hole separation efficiency, as well as the increased adsorption/activation sites provided by the metal centers in TCPP-M (M = Co, Ni, Cu). Our study indicates that metalloporphyrin could be used as a high-efficiency cocatalyst to enhance CO2 photoreduction activity.



NANO ◽  
2020 ◽  
Vol 15 (04) ◽  
pp. 2050045
Author(s):  
Ning Liu ◽  
Huidong Xie ◽  
Jie Li ◽  
Yajuan Zhao ◽  
Na Wang

Brookite TiO2 was synthesized by a hydrothermal method, g-C3N4 was prepared by a pyrolytic method, brookite/g-C3N4 composites were prepared by a calcining method, and brookite/g-C3N4/BiOBr ternary composites were prepared by loading BiOBr on the surface of brookite/g-C3N4. XRD and XPS analysis of the composites confirmed the formation of brookite TiO2/g-C3N4/BiOBr. SEM and TEM results confirmed the as-prepared composites were nanosized. The optimum loading amount of BiOBr was 30%. The photocatalytic results showed that the brookite/g-C3N4/30%BiOBr composites degraded rhodamine B completely under visible light irradiation. The degradation ratio of brookite/g-C3N4/30%BiOBr toward rhodamine B was nearly 100% for 2[Formula: see text]h, which was much higher than that of brookite TiO2 and brookite/g-C3N4 catalysts. The reason for the improvement of photocatalytic activity might be because the composites promoted the formation of superoxide radicals and the separation efficiency of photogenerated electron-hole pairs. The photocurrent density of the brookite/g-C3N4/30%BiOBr was about 10 times higher than that of pure brookite. In addition, the brookite/g-C3N4/BiOBr showed a good repeatablity of photocatalysis.



RSC Advances ◽  
2016 ◽  
Vol 6 (59) ◽  
pp. 54060-54068 ◽  
Author(s):  
Saranyoo Chaiwichian ◽  
Khatcharin Wetchakun ◽  
Sukon Phanichphant ◽  
Wiyong Kangwansupamonkon ◽  
Natda Wetchakun

The formation of Fe-doped Bi2WO6–BiVO4composites could improve the separation efficiency of photogenerated electron–hole pairs, then increasing its photocatalytic activity.



Nanoscale ◽  
2019 ◽  
Vol 11 (19) ◽  
pp. 9444-9456 ◽  
Author(s):  
Xinyi Lian ◽  
Zhou Chen ◽  
Xiang Yu ◽  
Tingting Fan ◽  
Yunyun Dong ◽  
...  

A gradual sulfur doping strategy was first proposed here to expand the optical absorption range, improve the separation efficiency of photogenerated electron–hole pairs, and finally enhance the photocatalytic activity.



Nanomaterials ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 1168
Author(s):  
Yuanpei Lan ◽  
Xuewen Xia ◽  
Junqi Li ◽  
Xisong Mao ◽  
Chaoyi Chen ◽  
...  

Oxygen vacancies (OVs) have critical effects on the photoelectric characterizations and photocatalytic activity of nanoceria, but the contributions of surface OVs on the promoted photocatalytic properties are not clear yet. In this work, we synthesized ceria nanopolyhedron (P-CeO2), ceria nanocube (C-CeO2) and ceria nanorod (R-CeO2), respectively, and annealed them at 600 °C in air, 30%, 60% or pure H2. After annealing, the surface OVs concentration of ceria elevates with the rising of H2 concentration. Photocatalytic activity of annealed ceria is promoted with the increasing of surface OVs, the methylene blue photodegradation ratio with pure hydrogen annealed of P-CeO2, C-CeO2 or R-CeO2 is 93.82%, 85.15% and 90.09%, respectively. Band gap of annealed ceria expands first and then tends to narrow slightly with the rising of surface OVs, while the valence band (VB) and conductive band (CB) of annealed ceria changed slightly. Both of photoluminescence spectra and photocurrent results indicate that the separation efficiency of photoinduced electron-hole pairs is significantly enhanced with the increasing of the surface OVs concentration. The notable weakened recombination of photogenerated carrier is suggested to attribute a momentous contribution on the enhanced photocatalytic activity of ceria which contains surface OVs.



2019 ◽  
Vol 48 (10) ◽  
pp. 3486-3495 ◽  
Author(s):  
Juying Lei ◽  
Bin Chen ◽  
Weijia Lv ◽  
Liang Zhou ◽  
Lingzhi Wang ◽  
...  

An inverse opal TiO2/g-C3N4 composite with excellent photogenerated electron–hole separation efficiency and enhanced visible light absorption efficiency was constructed.



Sign in / Sign up

Export Citation Format

Share Document