scholarly journals Longtime behaviour and bursting frequency, via a simple formula, of FitzHugh–Rinzel neurons

2021 ◽  
Author(s):  
Salvatore Rionero

AbstractThe longtime behaviour of the FitzHugh–Rinzel (FHR) neurons and the transition to instability of the FHR steady states, are investigated. Criteria guaranteeing solutions boundedness, absorbing sets, in the energy phase space, existence and steady states instability via oscillatory bifurcations, are obtained. Denoting by $$ \lambda ^{3} + \sum\nolimits_{{k = 1}}^{3} {A_{k} } (R)\lambda ^{{3 - k}} = 0 $$ λ 3 + ∑ k = 1 3 A k ( R ) λ 3 - k = 0 , with R bifurcation parameter, the spectrum equation of a steady state $$m_0$$ m 0 , linearly asymptotically stable at certain value of R, the frequency f of an oscillatory destabilizing bifurcation (neuron bursting frequency), is shown to be $$ f=\displaystyle \frac{\sqrt{A_2(R_\mathrm{H})}}{2\pi } $$ f = A 2 ( R H ) 2 π with $$R_\mathrm{H}$$ R H location of R at which the bifurcation occurs. The instability coefficient power (ICP) (Rionero in Rend Fis Acc Lincei 31:985–997, 2020; Fluids 6(2):57, 2021) for the onset of oscillatory bifurcations, is introduced, proved and applied, in a new version.

2005 ◽  
Vol 15 (10) ◽  
pp. 3051-3074 ◽  
Author(s):  
RENÉ THOMAS ◽  
MARCELLE KAUFMAN

Nonlinear dynamic systems can be considered in terms of feedback circuits (for short, circuits), which are circular interactions between variables. Each circuit can be identified without ambiguity from the Jacobian matrix of the system. Of special relevance are those circuits (or unions of disjoint circuits) that involve all the variables of the system. We call them "nuclei" because, in the same way as, in Biology, the cell nucleus contains essential genetic information, in nonlinear dynamics, nuclei are crucial elements in the genesis of steady states. Indeed, each nucleus taken alone can generate one or more steady states, whose nature is determined by the sign patterns of the nucleus. There can be up to two nuclei in 2D systems, six in 3D systems, … n! in nD systems. However, many interesting systems of high dimensionality have only two, sometimes even one, nucleus. This paper is based on an extensive exploitation of the Jacobian matrix of systems, in order to figure the global structure of phase space. In nonlinear systems, the value, and often the sign, of terms of the Jacobian matrix depend on the location in phase space. In contrast with a current usage, we consider this matrix, as well as its eigenvalues and eigenvectors, not only in close vicinity of steady states of the system, but also everywhere in phase space. Two distinct, but complementary approaches are used here. In Sec. 2, we define frontiers that partition phase space according to the signs of the eigenvalues (or of their real part if they are complex), and where required, to the slopes of the eigenvectors. From then on, the exact nature of any steady state that might be present in a domain can be identified on the sole basis of its location in that domain and, in addition, one has at least an idea of the possible number of steady states. In Sec. 3, we use a more qualitative approach based on the theory of circuits. Here, phase space is partitioned according to the sign patterns of elements of the Jacobian matrix, more specifically, of the nuclei. We feel that this approach is more generic than that described in Sec. 2. Indeed, it provides a global view of the structure of phase space, and thus permits to infer much of the dynamics of the system by a simple analysis of sign patterns within the Jacobian matrix. This approach also turned out to be extremely useful for synthesizing systems with preconceived properties. For a wide variety of systems, once the partition process has been achieved, each domain comprises at most one steady state. We found, however, a family of systems in which two steady states (typically, two stable or two unstable nodes) differ by neither of the criteria we use, and are thus not separated by our partition processes. This counter-example implies non-polynomial functions. It is essential to realize that the frontier diagrams permit a reduction of the dimensionality of the analysis, because only those variables that are involved in nonlinearities are relevant for the partition process. Whatever the number of variables of a system, its frontier diagram can be drawn in two dimensions whenever no more than two variables are involved in nonlinearities. Pre-existing conjectures concerning the necessary conditions for multistationarity are discussed in terms of the partition processes.


2012 ◽  
Vol 17 (6) ◽  
pp. 1227-1251 ◽  
Author(s):  
Eric W. Bond ◽  
Kazumichi Iwasa ◽  
Kazuo Nishimura

We extend the dynamic Heckscher–Ohlin model in Bond et al. [Economic Theory(48, 171–204, 2011)] and show that if the labor-intensive good is inferior, then there may exist multiple steady states in autarky and poverty traps can arise. Poverty traps for the world economy, in the form of Pareto-dominated steady states, are also shown to exist. We show that the opening of trade can have the effect of pulling the initially poorer country out of a poverty trap, with both countries having steady state capital stocks exceeding the autarky level. However, trade can also pull an initially richer country into a poverty trap. These possibilities are a sharp contrast with dynamic Heckscher–Ohlin models with normality in consumption, where the country with the larger (smaller) capital stock than the other will reach a steady state where the level of welfare is higher (lower) than in the autarkic steady state.


Author(s):  
Jianpeng Wang ◽  
Binxiang Dai

In this paper, a reaction–diffusion SEI epidemic model with nonlinear incidence rate is proposed. The well-posedness of solutions is studied, including the existence of positive and unique classical solution and the existence and the ultimate boundedness of global solutions. The basic reproduction numbers are given in both heterogeneous and homogeneous environments. For spatially heterogeneous environment, by the comparison principle of the diffusion system, the infection-free steady state is proved to be globally asymptotically stable if [Formula: see text] if [Formula: see text], the system will be persistent and admit at least one positive steady state. For spatially homogenous environment, by constructing a Lyapunov function, the infection-free steady state is proved to be globally asymptotically stable if [Formula: see text] and then the unique positive steady state is achieved and is proved to be globally asymptotically stable if [Formula: see text]. Finally, two examples are given via numerical simulations, and then some control strategies are also presented by the sensitive analysis.


1998 ◽  
Vol 53 (3-4) ◽  
pp. 171-177
Author(s):  
Hsing-Ya Li

Abstract A chemical reaction network can admit multiple positive steady states if and only if there exists a positive steady state having a zero eigenvalue with its eigenvector in the stoichiometric subspace. A zero eigenvalue analysis is proposed which provides a necessary and sufficient condition to determine the possibility of the existence of such a steady state. The condition forms a system of inequalities and equations. If a set of solutions for the system is found, then the network under study is able to admit multiple positive steady states for some positive rate constants. Otherwise, the network can exhibit at most one steady state, no matter what positive rate constants the system might have. The construction of a zero-eigenvalue positive steady state and a set of positive rate constants is also presented. The analysis is demonstrated by two examples.


Entropy ◽  
2021 ◽  
Vol 23 (8) ◽  
pp. 1066
Author(s):  
Gehad Sadiek ◽  
Samaher Almalki

Recently new novel magnetic phases were shown to exist in the asymptotic steady states of spin systems coupled to dissipative environments at zero temperature. Tuning the different system parameters led to quantum phase transitions among those states. We study, here, a finite two-dimensional Heisenberg triangular spin lattice coupled to a dissipative Markovian Lindblad environment at finite temperature. We show how applying an inhomogeneous magnetic field to the system at different degrees of anisotropy may significantly affect the spin states, and the entanglement properties and distribution among the spins in the asymptotic steady state of the system. In particular, applying an inhomogeneous field with an inward (growing) gradient toward the central spin is found to considerably enhance the nearest neighbor entanglement and its robustness against the thermal dissipative decay effect in the completely anisotropic (Ising) system, whereas the beyond nearest neighbor ones vanish entirely. The spins of the system in this case reach different steady states depending on their positions in the lattice. However, the inhomogeneity of the field shows no effect on the entanglement in the completely isotropic (XXX) system, which vanishes asymptotically under any system configuration and the spins relax to a separable (disentangled) steady state with all the spins reaching a common spin state. Interestingly, applying the same field to a partially anisotropic (XYZ) system does not just enhance the nearest neighbor entanglements and their thermal robustness but all the long-range ones as well, while the spins relax asymptotically to very distinguished spin states, which is a sign of a critical behavior taking place at this combination of system anisotropy and field inhomogeneity.


2021 ◽  
Author(s):  
Damoun Langary ◽  
Anika Kueken ◽  
Zoran Nikoloski

Balanced complexes in biochemical networks are at core of several theoretical and computational approaches that make statements about the properties of the steady states supported by the network. Recent computational approaches have employed balanced complexes to reduce metabolic networks, while ensuring preservation of particular steady-state properties; however, the underlying factors leading to the formation of balanced complexes have not been studied, yet. Here, we present a number of factorizations providing insights in mechanisms that lead to the origins of the corresponding balanced complexes. The proposed factorizations enable us to categorize balanced complexes into four distinct classes, each with specific origins and characteristics. They also provide the means to efficiently determine if a balanced complex in large-scale networks belongs to a particular class from the categorization. The results are obtained under very general conditions and irrespective of the network kinetics, rendering them broadly applicable across variety of network models. Application of the categorization shows that all classes of balanced complexes are present in large-scale metabolic models across all kingdoms of life, therefore paving the way to study their relevance with respect to different properties of steady states supported by these networks.


2016 ◽  
Vol 26 (02) ◽  
pp. 1650033 ◽  
Author(s):  
Ling Jin ◽  
Qi Wang ◽  
Zengyan Zhang

In this paper, we investigate pattern formation in Keller–Segel chemotaxis models over a multidimensional bounded domain subject to homogeneous Neumann boundary conditions. It is shown that the positive homogeneous steady state loses its stability as chemoattraction rate [Formula: see text] increases. Then using Crandall–Rabinowitz local theory with [Formula: see text] being the bifurcation parameter, we obtain the existence of nonhomogeneous steady states of the system which bifurcate from this homogeneous steady state. Stability of the bifurcating solutions is also established through rigorous and detailed calculations. Our results provide a selection mechanism of stable wavemode which states that the only stable bifurcation branch must have a wavemode number that minimizes the bifurcation value. Finally, we perform extensive numerical simulations on the formation of stable steady states with striking structures such as boundary spikes, interior spikes, stripes, etc. These nontrivial patterns can model cellular aggregation that develop through chemotactic movements in biological systems.


1999 ◽  
Vol 390 ◽  
pp. 127-150 ◽  
Author(s):  
V. A. VLADIMIROV ◽  
H. K. MOFFATT ◽  
K. I. ILIN

The equations of magnetohydrodynamics (MHD) of an ideal fluid have two families of topological invariants: the magnetic helicity invariants and the cross-helicity invariants. It is first shown that these invariants define a natural foliation (described as isomagnetovortical, or imv for short) in the function space in which solutions {u(x, t), h(x, t)} of the MHD equations reside. A relaxation process is constructed whereby total energy (magnetic plus kinetic) decreases on an imv folium (all magnetic and cross-helicity invariants being thus conserved). The energy has a positive lower bound determined by the global cross-helicity, and it is thus shown that a steady state exists having the (arbitrarily) prescribed families of magnetic and cross-helicity invariants.The stability of such steady states is considered by an appropriate generalization of (Arnold) energy techniques. The first variation of energy on the imv folium is shown to vanish, and the second variation δ2E is constructed. It is shown that δ2E is a quadratic functional of the first-order variations δ1u, δ1h of u and h (from a steady state U(x), H(x)), and that δ2E is an invariant of the linearized MHD equations. Linear stability is then assured provided δ2E is either positive-definite or negative-definite for all imv perturbations. It is shown that the results may be equivalently obtained through consideration of the frozen-in ‘modified’ vorticity field introduced in Part 1 of this series.Finally, the general stability criterion is applied to a variety of classes of steady states {U(x), H(x)}, and new sufficient conditions for stability to three-dimensional imv perturbations are obtained.


Sign in / Sign up

Export Citation Format

Share Document