The simultaneous introduction of low and high molecular weight of biodegradable Poly(diethylene glycol adipate)s to Plasticize and Toughen Polylactide

2015 ◽  
Vol 16 (12) ◽  
pp. 2519-2528 ◽  
Author(s):  
Yanping Hao ◽  
Huili Yang ◽  
Huiliang Zhang ◽  
Ge Gao ◽  
Lisong Dong
Polymers ◽  
2020 ◽  
Vol 12 (10) ◽  
pp. 2389 ◽  
Author(s):  
Sun Jong Kim ◽  
Hyo Won Kwak ◽  
Sangwoo Kwon ◽  
Hyunho Jang ◽  
Su-il Park

In this study, poly(butylene sebacate-co-terephthalate) (PBSeT) was successfully synthesized using various ratios of sebacic acid (Se) and dimethyl terephthalate (DMT). The synthesized PBSeT showed a high molecular weight (Mw, 88,700–154,900 g/mol) and good elastomeric properties. In particular, the PBSeT64 (6:4 sebacic acid/dimethyl terephthalate mole ratio) sample showed an elongation at break value of over 1600%. However, further increasing the DMT content decreased the elongation properties but increased the tensile strength due to the inherent strength of the aromatic unit. The melting point and crystallization temperature were difficult to observe in PBSeT64, indicating that an amorphous copolyester was formed at this mole ratio. Interestingly, wide angle X-ray diffraction (WAXD) curves was shown in the cases of PBSeT46 and PBSeT64, neither the crystal peaks of PBSe nor those of poly(butylene terephthalate) (PBT) are observed, that is, PBSeT64 showed an amorphous form with low crystallinity. The Fourier-transform infrared (FT-IR) spectrum showed C–H peaks at around 2900 cm−1 that reduced as the DMT ratio was increased. Nuclear magnetic resonance (NMR) showed well-resolved peaks split by coupling with the sebacate and DMT moieties. These results highlight that elastomeric PBSeT with high molecular weight could be synthesized by applying DMT monomer and showed promising mechanical properties.


1996 ◽  
Vol 11 (4) ◽  
pp. 320-328 ◽  
Author(s):  
R. Miyoshi ◽  
N. Hashimoto ◽  
K. Koyanagi ◽  
Y. Sumihiro ◽  
T. Sakai

Author(s):  
Richard B. Vallee

Microtubules are involved in a number of forms of intracellular motility, including mitosis and bidirectional organelle transport. Purified microtubules from brain and other sources contain tubulin and a diversity of microtubule associated proteins (MAPs). Some of the high molecular weight MAPs - MAP 1A, 1B, 2A, and 2B - are long, fibrous molecules that serve as structural components of the cytamatrix. Three MAPs have recently been identified that show microtubule activated ATPase activity and produce force in association with microtubules. These proteins - kinesin, cytoplasmic dynein, and dynamin - are referred to as cytoplasmic motors. The latter two will be the subject of this talk.Cytoplasmic dynein was first identified as one of the high molecular weight brain MAPs, MAP 1C. It was determined to be structurally equivalent to ciliary and flagellar dynein, and to produce force toward the minus ends of microtubules, opposite to kinesin.


1993 ◽  
Vol 70 (06) ◽  
pp. 0978-0983 ◽  
Author(s):  
Edelmiro Regano ◽  
Virtudes Vila ◽  
Justo Aznar ◽  
Victoria Lacueva ◽  
Vicenta Martinez ◽  
...  

SummaryIn 15 patients with acute myocardial infarction who received 1,500,000 U of streptokinase, the gradual appearance of newly synthesized fibrinogen and the fibrinopeptide release during the first 35 h after SK treatment were evaluated. At 5 h the fibrinogen circulating in plasma was observed as the high molecular weight fraction (HMW-Fg). The concentration of HMW-Fg increased continuously, and at 20 h reached values higher than those obtained from normal plasma. HMW-Fg represented about 95% of the total fibrinogen during the first 35 h. The degree of phosphorylation of patient fibrinogen increased from 30% before treatment to 65% during the first 5 h, and then slowly declined to 50% at 35 h.The early rates of fibrinopeptide A (FPA) and phosphorylated fibrinopeptide A (FPAp) release are higher in patient fibrinogen than in isolated normal HMW-Fg and normal fibrinogen after thrombin addition. The early rate of fibrinopeptide B (FPB) release is the same for the three fibrinogen groups. However, the late rate of FPB release is higher in patient fibrinogen than in normal HMW-Fg and normal fibrinogen. Therefore, the newly synthesized fibrinogen clots faster than fibrinogen in the normal steady state.In two of the 15 patients who had occluded coronary arteries after SK treatment the HMW-Fg and FPAp levels increased as compared with the 13 patients who had patent coronary arteries.These results provide some support for the idea that an increased synthesis of fibrinogen in circulation may result in a procoagulant tendency. If this is so, the HMW-Fg and FPAp content may serve as a risk index for thrombosis.


1961 ◽  
Vol 06 (01) ◽  
pp. 015-024 ◽  
Author(s):  
Sven Erik Bergentz ◽  
Oddvar Eiken ◽  
Inga Marie Nilsson

Summary1. Infusions of low molecular weight dextran (Mw = 42 000) to dogs in doses of 1—1.5 g per kg body weight did not produce any significant changes in the coagulation mechanism.2. Infusions of high molecular weight dextran (Mw = 1 000 000) to dogs in doses of 1—1.5 g per kg body weight produced severe defects in the coagulation mechanism, namely prolongation of bleeding time and coagulation time, thrombocytopenia, pathological prothrombin consumption, decrease of fibrinogen, prothrombin and factor VII, factor V and AHG.3. Heparin treatment of the dogs was found to prevent the decrease of fibrinogen, prothrombin and factor VII, and factor V otherwise occurring after injection of high molecular weight dextran. Thrombocytopenia was not prevented.4. In in vitro experiments an interaction between fibrinogen and dextran of high and low molecular weight was found to take place in systems comprising pure fibrinogen. No such interaction occurred in the presence of plasma.5. It is concluded that the coagulation defects induced by infusions of high molecular weight dextran are due to intravascular coagulation.


Sign in / Sign up

Export Citation Format

Share Document