Development of PCR-Based Markers Linked to Quantitative Resistance to Late Blight in a Diploid Hybrid Potato Population of Solanum phureja x S. stenotomum

2009 ◽  
Vol 86 (3) ◽  
pp. 188-195 ◽  
Author(s):  
W. M. D. K. Wickramasinghe ◽  
Xinshun S. Qu ◽  
Stefano Costanzo ◽  
Kathleen G. Haynes ◽  
Barbara J. Christ
2016 ◽  
Vol 43 (12) ◽  
pp. 1205 ◽  
Author(s):  
Kalenahalli N. Yogendra ◽  
Ajjamada C. Kushalappa

Late blight caused by Phytophthora infestans is a devastating disease affecting potato production worldwide. The quantitative resistance is durable, but the underlying molecular and biochemical mechanisms are poorly understood, limiting its application in breeding. Integrated transcriptomics and metabolomics approach was used for the first time to study the hierarchies of molecular events occurring, following inoculation of resistant and susceptible potato genotypes with P. infestans. RNA sequencing revealed a total of 4216 genes that were differentially expressed in the resistant than in the susceptible genotype. Genes that were highly expressed and associated with their biosynthetic metabolites that were highly accumulated, through metabolic pathway regulation, were selected. Quantitative real-time PCR was performed to confirm the RNA-seq expression levels. The induced leucine-rich repeat receptor-like kinases (LRR-RLKs) are considered to be involved in pathogen recognition. These receptor genes are considered to trigger downstream oxidative burst, phytohormone signalling-related genes, and transcription factors that regulated the resistance genes to produce resistance related metabolites to suppress the pathogen infection. It was noted that several resistance genes in metabolic pathways related to phenylpropanoids, flavonoids, alkaloids and terpenoid biosynthesis were strongly induced in the resistant genotypes. The pathway specific gene induction provided key insights into the metabolic reprogramming of induced defence responses in resistant genotypes.


2008 ◽  
Vol 44 (2) ◽  
pp. 145-155 ◽  
Author(s):  
J. M. K. MULEMA ◽  
E. ADIPALA ◽  
O. M. OLANYA ◽  
W. WAGOIRE

SUMMARYPotato is an important source of food and income in the highlands of East Africa. Identification of superior genotypes for improved agronomic characteristics will enhance tuber yield. Seven promising clones from population B potato selections (quantitative resistance to late blight) obtained from the International Potato Center, two genotypes from population A (qualitative resistance) and three control cultivars were evaluated for three cropping seasons at four locations in western Uganda in order to determine performance and yield stability. The additive main effects and multiplicative interactive (AMMI) model was used for the analysis. The analysis of variance of yield data for genotypes × locations, genotypes × seasons and genotypes × locations × seasons was significant (p < 0.05) showing the variable response of genotypes and the need for stability analysis. The AMMI statistical model showed that the most stable genotypes were 392618.250 (B5) and 392127.270 (B6) (high yield) and 392618.256 (B1), 391049.255 (B2) and 392127.256 (B7) (low yield) and had negligible interactions with the environments. Across environments, the ranking of genotypes for tuber yield was not consistent. The clones 381471.18 (A2), 387121.4 (A1) and cultivar Victoria had high average yields, but these yields were below average in a few environments. Selective deployment of cultivars can improve tuber yield in the highland tropics.Note: Mention of trade names or commercial products in this publication is solely for the purpose of providing specific information and does not imply recommendation for endorsement by the US Department of Agriculture, Makerere University or Kachwekano Agricultural Research and Development Center.


2002 ◽  
Vol 15 (6) ◽  
pp. 587-597 ◽  
Author(s):  
Friederike Trognitz ◽  
Patricia Manosalva ◽  
Rene Gysin ◽  
David Niño-Liu ◽  
Reinhard Simon ◽  
...  

Markers corresponding to 27 plant defense genes were tested for linkage disequilibrium with quantitative resistance to late blight in a diploid potato population that had been used for mapping quantitative trait loci (QTLs) for late blight resistance. Markers were detected by using (i) hybridization probes for plant defense genes, (ii) primer pairs amplifying conserved domains of resistance (R) genes, (iii) primers for defense genes and genes encoding transcriptional regulatory factors, and (iv) primers allowing amplification of sequences flanking plant defense genes by the ligation-mediated polymerase chain reaction. Markers were initially screened by using the most resistant and susceptible individuals of the population, and those markers showing different allele frequencies between the two groups were mapped. Among the 308 segregating bands detected, 24 loci (8%) corresponding to six defense gene families were associated with resistance at χ2 ≥ 13, the threshold established using the permutation test at P = 0.05. Loci corresponding to genes related to the phenylpropanoid pathway (phenylalanine ammonium lyase [PAL], chalcone isomerase [CHI], and chalcone synthase [CHS]), loci related to WRKY regulatory genes, and other defense genes (osmotin and a Phytophthora infestans-induced cytochrome P450) were significantly associated with quantitative disease resistance. A subset of markers was tested on the mapping population of 94 individuals. Ten defense-related markers were clustered at a QTL on chromosome III, and three defense-related markers were located at a broad QTL on chromosome XII. The association of candidate genes with QTLs is a step toward understanding the molecular basis of quantitative resistance to an important plant disease.


2006 ◽  
Vol 125 (4) ◽  
pp. 385-389 ◽  
Author(s):  
I. Simko ◽  
S. Costanzo ◽  
V. Ramanjulu ◽  
B. J. Christ ◽  
K. G. Haynes

2012 ◽  
Vol 55 (3-4) ◽  
pp. 315-322 ◽  
Author(s):  
Wenhe Lu ◽  
Meng Yu ◽  
Yamei Bai ◽  
Wenxia Li ◽  
Xuepu Xu

2010 ◽  
Vol 121 (8) ◽  
pp. 1553-1567 ◽  
Author(s):  
Gilda Rauscher ◽  
Ivan Simko ◽  
Hilary Mayton ◽  
Merideth Bonierbale ◽  
Christine D. Smart ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document