scholarly journals Achieving proportional fairness in WiFi networks via bandit convex optimization

Author(s):  
Golshan Famitafreshi ◽  
Cristina Cano

AbstractIn this paper, we revisit proportional fair channel allocation in IEEE 802.11 networks. Traditional approaches are either based on the explicit solution of the optimization problem or use iterative solvers to converge to the optimum. Instead, we propose an algorithm able to learn the optimal slot transmission probability only by monitoring the throughput of the network. We have evaluated this algorithm both (i) using the true value of the function to optimize and (ii) considering estimation errors. We provide a comprehensive performance evaluation that includes assessing the sensitivity of the algorithm to different learning and network parameters as well as its reaction to network dynamics. We also evaluate the effect of noisy estimates on the convergence rate and propose a method to alleviate them. We believe our approach is a practical solution to improve the performance of wireless networks as it does not require knowing the network parameters in advance. Yet, we conclude that the setting of the parameters of the algorithm is crucial to guarantee fast convergence.

2010 ◽  
Vol 77 (6) ◽  
Author(s):  
Patricio F. Mendez

This work introduces, for the first time, a formal approach to the estimation of characteristic values of differential and other related expressions in the scaling of engineering problems. The methodology introduced aims at overcoming the inability of the traditional approach to match the exact solution of asymptotic cases. This limitation of the traditional approach often leaves in doubt whether the scaling laws obtained actually represent the desired phenomena. The formal approach presented yields estimates with smaller error than traditional approaches; these improved estimates converge to the exact solution in simple asymptotic cases and do not diverge from the exact solution in cases in which the error of traditional approaches is unbounded. The significance of this contribution is that it extends the range of applicability of scaling estimates to problems for which traditional approaches were deemed unreliable, for example, cases in which the curvature of functions is large, or complex cases in which the accumulation of estimation errors exceeds reasonable limits. This research is part of a larger effort towards a computational implementation of scaling, and it is especially valuable for approximating multicoupled, multiphysics problems in continuum mechanics (e.g., coupled heat transfer, fluid flow, and electromagnetics) that are often difficult to analyze numerically or empirically.


Author(s):  
Helga Balbi ◽  
Natalia Fernandes ◽  
Felipe Souza ◽  
Ricardo Carrano ◽  
Celio Albuquerque ◽  
...  

2014 ◽  
Vol 2014 ◽  
pp. 1-12
Author(s):  
Aoi Honda ◽  
Mario Köppen

The recent problem of network resource allocation is studied where pairs of users could be in a favourable situation, given that the allocation scheme is refined by some add-on technology. The general question here is whether the additional effort can be effective with regard to the user’s experience of fairness. The computational approach proposed in this paper to handle this question is based on the framework of relational optimization. For representing different weightings for different pairs of users, the use of a fuzzy measure appears to be reasonable. The generalized Choquet integrals are discussed from the viewpoint of representing fairness and it is concluded that the asymmetric Choquet integral is the most suitable approach. A binary relation using the asymmetric Choquet integral is proposed. In case of a supermodular fuzzy measure, this is a transitive and cycle-free relation. The price of fairness with regard to a wireless channel allocation problem taking channel interference into account is experimentally studied and it can be seen that the asymmetric on relation actually selects allocations that perform on average between maxmin fairness and proportional fairness, and being more close to maxmin fairness as long as channel interference is not high.


2018 ◽  
Vol 7 (2) ◽  
pp. 264-271 ◽  
Author(s):  
Suherman Suherman

The 802.11 networks (wireless fidelity (WiFi) networks) have been the main wireless internet access infrastructure within houses and buildings. Besides access point placement, building architectures contribute to the WiFi signal spreading. Even dough WiFi installation in buildings becomes prevalent; the building architectures still do not take WiFi-friendliness into considerations. Current research on building and WiFi are on access point location, location based service and home automation. In fact, the more friendly the building to WiFi signal, the more efficient the 802.11 based wireless infrastructure. This paper introduces the term of WiFi-friendly building by considering signal propagations, the obstacle impact, as well as proposing an ornament-attaced reflector and a hole-in-the-wall structure to improve WiFi signal distribution. Experiment results show that obstacle materials made of concrete reducing WiFi signal the most, followed by metal and wood. Reflecting materials are able to improve the received signal level, for instance, the implemented ornament-attached reflector is able improving the received signal up to 6.56 dBm. Further, the hole-in-the-wall structure is successfully increasing WiFi signal up to 2.3 dBm.


Sign in / Sign up

Export Citation Format

Share Document