scholarly journals Producing High-Dose Liqui-Tablet (Ketoprofen 100 mg) for Enhanced Drug Release Using Novel Liqui-Mass Technology

Author(s):  
Matthew Lam ◽  
Ali Nokhodchi

Abstract Purpose Liqui-Tablet is a dosage form derived from Liqui-Mass technology. It has proven to be a promising approach to improve drug dissolution rate of poorly water-soluble drugs. So far, Liqui-Tablet is feasible for low-dose drugs. In this study, an attempt was made to produce high-dose Liqui-Tablet, whilst maintaining ideal physicochemical properties for ease of manufacturing. Methods Liqui-Tablets containing 100 mg of ketoprofen were produced using various liquid vehicles including PEG 200, Span 80, Kolliphor EL, PG, and Tween 85. Investigations that were carried out included saturation solubility test, dissolution test, tomographic study, and typical quality control tests for assessing flowability, particle size distribution, friability, and tablet hardness. Results The weight of these Liqui-Tablets was acceptable for swallowing (483.8 mg), and the saturation solubility test showed PEG 200 to be the most suitable liquid vehicle (493 mg/mL). Tests investigating physicochemical properties such as flowability, particle size distribution, friability, and tablet hardness have shown no issue concerning quality control and manufacturability. The drug release test of the best formulation has shown extremely rapid drug release at pH 7.4 (100% after 5 min). At pH 1.2 the drug release was reasonable considering the formulation was yet to be optimized. Conclusion Despite the high amount of API and liquid vehicle, it is possible to produce a high-dose dosage form with acceptable size and weight for swallowing using the novel Liqui-Mass technology. This has the potential to diversify the technology by removing the restriction of high dose drug that has been seen in liquisolid technology.

2013 ◽  
Vol 325-326 ◽  
pp. 106-110
Author(s):  
Monica Stamate Cretan ◽  
Corneliu Munteanu ◽  
Eliza Gafitanu ◽  
Andreea Carmen Barbinta ◽  
Ciprian Stamate

Drug-release systems are studied lately for increasing absorption in the body and improve the therapeutic effectiveness is key objective. Whatever form it may take a drug release system: tablet, implant, injectable suspension or transdermal system, the basic unit on which effective therapeutic drug particle. Knowledge of particle size distribution in a disperse system is of great importance in pharmaceutical technology. The size, surface area and volume-surface particle may be relevant to the physical, chemical and pharmacological drug toxicities. Stability and speed of dissolution of ketoprofen are much reduced in pure and coupled with a solubility promoter, enhances the bioavailability and particle size distribution depends. In order to improve absorption properties of ketoprofen were synthesized drug microparticles containing ketoprofen and hydroxypropyl beta cyclodextrin. Drug microparticles were studied by SEM microscopy and the results correlated with solubility properties. It was found that microparticles obtained are more easily soluble than pure ketoprofen and small size increases bioavailability.


Author(s):  
Faisalina Ahmad Fisol ◽  
Fabio Sonvico ◽  
Paolo Colombo ◽  
Amirul Al-Ashraf Abdullah ◽  
Habibah A. Wahab ◽  
...  

Polyhydroxyalkanoate (PHA) co-polymers show relatively higher in vivo degradation rate compared to other PHAs thus they received a great deal of attention for a wide range of medical applications. Nanoparticles (NPs) loaded with poorly water soluble anticancer drug docetaxel (DCX) were produced using poly 3-hydroxybutyrate-co-4-hydroxybutyrate, P(3HB-co-4HB), co-polymers biosynthesised from Cupriavidus sp. USMAA1020 isolated from Malaysian environment. Three co-polymers with different molar proportions of 4-hydroxybutirate (4HB) were used: 16% (PHB16), 30% (PHB30) and 70% (PHB70) 4HB-containing P(3HB-co-4HB). Blank and DCX loaded nanoparticles were then characterized for their size and size distribution, surface charge, encapsulation efficiency and drug release. Pre-formulation studies showed that an optimised formulation could be achieved through the emulsification/solvent evaporation method using PHB70 with the addition of 1.0% PVA, as stabilizer and 0.03% VitE-TPGS, as surfactant. DCX-loaded PHB70 nanoparticles (DCX-PHB70) gave the desired particle size distribution in term of average particles sizes around 150 nm and narrow particle size distribution (PDI below 0.100). The encapsulation efficiencies result showed that at 30% w/w drug-to-polymer ratio: DCX- PHB16 NPs were able to encapsulate up to 42% of DCX; DCX-PHB30 NPs encapsulated up to 46% of DCX and DCX-PHB70 NPs encapsulated up to 50% of DCX within the nanoparticles system. Approximately 60% of DCX was released from the DCX-PHB70 NPs within 7 days for 5%, 10% and 20% of drug to polymer ratio while for the 30% and 40% drug to polymer ratios, an almost complete drug release (98%) after 7 days of incubation was observed.


2019 ◽  
Vol 25 (S2) ◽  
pp. 2328-2329 ◽  
Author(s):  
Ulrich Mansfeld ◽  
Francesco Pellegrino ◽  
Valter Maurino ◽  
Sylvie Marguet ◽  
Fabienne Testard ◽  
...  

Foods ◽  
2020 ◽  
Vol 9 (4) ◽  
pp. 469
Author(s):  
Isela Rojas-Molina ◽  
Monsserrat Mendoza-Avila ◽  
María de los Ángeles Cornejo-Villegas ◽  
Alicia Del Real-López ◽  
Eric Rivera-Muñoz ◽  
...  

The tortilla is a foodstuff that has a short shelf-life, causing great losses to the industry. The objective of this work was to evaluate, for the first time, the physicochemical properties and resistant starch (RS) content of flours. These were obtained from nixtamalized corn tortillas made with traditional and industrial (commercial) methods, stored at 4 °C for 7, 15, and 30 days. The flours were characterized by measuring particle size distribution, color, water absorption index (WAI), water solubility index (WSI), viscosity, calcium, and RS content. Additionally, chemical proximate analysis, scanning electron microscopy (SEM), and thermal analysis were conducted. Storage at 4 °C increased the friability of tortillas and shifted the particle size distribution toward a greater content of coarse particles in corn tortilla flours. The commercial corn tortilla flours showed higher WAI and WSI values than the traditional corn tortilla flours. On the other hand, the traditional corn tortilla flours exhibited higher RS content values than commercial corn tortilla flours as well as peak viscosity. X-ray diffractograms revealed the presence of amylose-lipid complexes (RS5) in experimental samples. The thermograms evidenced three endotherms corresponding to corn starch gelatinization and melting of type I and type II amylose–lipid complexes.


Nanomaterials ◽  
2020 ◽  
Vol 10 (11) ◽  
pp. 2123 ◽  
Author(s):  
A.F. Faisalina ◽  
Fabio Sonvico ◽  
Paolo Colombo ◽  
A.A. Amirul ◽  
H.A. Wahab ◽  
...  

Polyhydroxyalkanoate (PHA) copolymers show a relatively higher in vivo degradation rate compared to other PHAs, thus, they receive a great deal of attention for a wide range of medical applications. Nanoparticles (NPs) loaded with poorly water-soluble anticancer drug docetaxel (DCX) were produced using poly(3-hydroxybutyrate-co-4-hydroxybutyrate), P(3HB-co-4HB), copolymers biosynthesised from Cupriavidus malaysiensis USMAA1020 isolated from the Malaysian environment. Three copolymers with different molar proportions of 4-hydroxybutirate (4HB) were used: 16% (PHB16), 30% (PHB30) and 70% (PHB70) 4HB-containing P(3HB-co-4HB). Blank and DCX-loaded nanoparticles were then characterized for their size and size distribution, surface charge, encapsulation efficiency and drug release. Preformulation studies showed that an optimised formulation could be achieved through the emulsification/solvent evaporation method using PHB70 with the addition of 1.0% PVA, as stabilizer and 0.03% VitE-TPGS, as surfactant. DCX-loaded PHB70 nanoparticles (DCX-PHB70) gave the desired particle size distribution in terms of average particle size around 150 nm and narrow particle size distribution (polydispersity index (PDI) below 0.100). The encapsulation efficiency result showed that at 30% w/w drug-to-polymer ratio: DCX- PHB16 NPs were able to encapsulate up to 42% of DCX; DCX-PHB30 NPs encapsulated up to 46% of DCX and DCX-PHB70 NPs encapsulated up to 50% of DCX within the nanoparticle system. Approximately 60% of DCX was released from the DCX-PHB70 NPs within 7 days for 5%, 10% and 20% of drug-to-polymer ratio while for the 30% and 40% drug-to-polymer ratios, an almost complete drug release (98%) after 7 days of incubation was observed.


2018 ◽  
Vol 11 (1) ◽  
pp. 63-75 ◽  
Author(s):  
Aleksander Lisowski ◽  
Patryk Matkowski ◽  
Magdalena Dąbrowska ◽  
Michał Piątek ◽  
Adam Świętochowski ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document