Dose-independent pharmacokinetics of a new peroxisome proliferator-activated receptor-γ agonist, KR-62980, in Sprague-Dawley rats and ICR mice

2011 ◽  
Vol 34 (12) ◽  
pp. 2051-2058 ◽  
Author(s):  
Jong-Shik Park ◽  
Min-Sun Kim ◽  
Jin Sook Song ◽  
Sung Heum Choi ◽  
Byung Hoi Lee ◽  
...  
PPAR Research ◽  
2014 ◽  
Vol 2014 ◽  
pp. 1-6 ◽  
Author(s):  
Yahan Liu ◽  
Xiao Yu Tian ◽  
Yu Huang ◽  
Nanping Wang

Pulmonary arterial hypertension (PAH) is a fatal disease characterized by a progressive increase in pulmonary arterial pressure leading to right ventricular failure and death. Activation of the endothelin (ET)-1 system has been demonstrated in plasma and lung tissue of PAH patients as well as in animal models of PAH. Recently, peroxisome proliferator-activated receptorγ(PPARγ) agonists have been shown to ameliorate PAH. The present study aimed to investigate the mechanism for the antivasoconstrictive effects of rosiglitazone in response to ET-1 in PAH. Sprague-Dawley rats were exposed to chronic hypoxia (10% oxygen) for 3 weeks. Pulmonary arteries from PAH rats showed an enhanced vasoconstriction in response to ET-1. Treatment with PPARγagonist rosiglitazone (20 mg/kg per day) with oral gavage for 3 days attenuated the vasocontractive effect of ET-1. The effect of rosiglitazone was lost in the presence ofL-NAME, indicating a nitric oxide-dependent mechanism. Western blotting revealed that rosiglitazone increasedETBRbut decreasedETARlevel in pulmonary arteries from PAH rats.ETBRantagonist A192621 diminished the effect of rosiglitazone on ET-1-induced contraction. These results demonstrated that rosiglitazone attenuated ET-1-induced pulmonary vasoconstriction in PAH through differential regulation of the subtypes of ET-1 receptors and, thus, provided a new mechanism for the therapeutic use of PPARγagonists in PAH.


2016 ◽  
Vol 45 (2) ◽  
pp. 344-352 ◽  
Author(s):  
Michael E. Dunn ◽  
Thomas G. Manfredi ◽  
Kevin Agostinucci ◽  
Steven K. Engle ◽  
Josh Powe ◽  
...  

Given the proven utility of natriuretic peptides as serum biomarkers of cardiovascular maladaptation and dysfunction in humans and the high cross-species sequence conservation of atrial natriuretic peptides, natriuretic peptides have the potential to serve as translational biomarkers for the identification of cardiotoxic compounds during multiple phases of drug development. This work evaluated and compared the response of N-terminal proatrial natriuretic peptide (NT-proANP) and N-terminal probrain natriuretic peptide (NT-proBNP) in rats during exercise-induced and drug-induced increases in cardiac mass after chronic swimming or daily oral dosing with a peroxisome proliferator-activated receptor γ agonist. Male Sprague-Dawley rats aged 8 to 10 weeks were assigned to control, active control, swimming, or drug-induced cardiac hypertrophy groups. While the relative heart weights from both the swimming and drug-induced cardiac hypertrophy groups were increased 15% after 28 days of dosing, the serum NT-proANP and NT-proBNP values were only increased in association with cardiac hypertrophy caused by compound administration. Serum natriuretic peptide concentrations did not change in response to adaptive physiologic cardiac hypertrophy induced by a 28-day swimming protocol. These data support the use of natriuretic peptides as fluid biomarkers for the distinction between physiological and drug-induced cardiac hypertrophy.


2007 ◽  
Vol 293 (1) ◽  
pp. E91-E95 ◽  
Author(s):  
Anne Zanchi ◽  
Abdul G. Dulloo ◽  
Christine Perregaux ◽  
Jean-Pierre Montani ◽  
Michel Burnier

Glitazones are peroxisome proliferator-activated receptor (PPAR)-γ agonists with powerful insulin-sensitizing properties. They promote the development of metabolically active adipocytes that can lead to a substantial gain in fat mass. Telmisartan is an ANG II type 1 receptor antagonist with partial PPAR-γ agonistic properties. Recently, telmisartan has been reported to prevent weight gain and improve insulin sensitivity in diet-induced obese rodents. The goal of this study was to examine the influence of telmisartan on pioglitazone-induced weight gain and insulin-sensitizing properties in the following two models of insulin resistance: a nongenetic model (high-fat-fed Sprague Dawley rats) and the genetically obese fa/ fa Zucker rat. After a 4-wk treatment, the pioglitazone-induced increase in fat mass was modest in the Sprague Dawley rats and severe in the Zucker rats. In both models, these effects were substantially decreased by concomitant treatment with telmisartan. The effects of telmisartan on body weight and fat mass in the Zucker rats were abolished by pair feeding, suggesting that it is the result of a decrease in food intake. Telmisartan did not interfere with the insulin-sensitizing properties of pioglitazone. This study demonstrates that telmisartan attenuates the glitazone-induced increase in fat mass without interfering with its insulin-sensitizing properties.


2011 ◽  
Vol 2011 ◽  
pp. 1-12 ◽  
Author(s):  
Rosanna Di Paola ◽  
Francesco Briguglio ◽  
Irene Paterniti ◽  
Emanuela Mazzon ◽  
Giacomo Oteri ◽  
...  

The aim of the present study was to evaluate the contribution of peroxisome proliferator-activated receptor (PPAR-β/δ) in animal model of periodontitis. Male Sprague-Dawley rats were lightly anaesthetized with pentobarbitone (35 mg/kg). Sterile, 2-0 black braided silk thread was placed around the cervix of the lower left first molar and knotted medially. Animals received GW0742 (0.3 mg/kg, 10% DMSO, i.p. after the ligature placement and daily for eight days). At day 8, the gingivomucosal tissue encircling the mandibular first molar was removed. One the eighth day after placement of the ligature, we evaluated (1) NF-κB expression, (2) cytokines expression, (3) iNOS expression, (5) the nitration of tyrosine, (6) apoptosis, and (8) the degree of gingivomucosal tissues injury. Administration of GW0742 significantly decreased all of the parameters of inflammation as described above. Taken together, these results demonstrate that GW0742 exerts an anti-inflammatory role during experimental periodontitis and is able to ameliorate the tissue damage.


2021 ◽  
Vol 49 (11) ◽  
pp. 030006052110550
Author(s):  
Xing Wang ◽  
Shuchun Chen ◽  
Dan Lv ◽  
Zelin Li ◽  
Luping Ren ◽  
...  

Objective To investigate the effect of liraglutide on the browning of white fat and the suppression of obesity via regulating microRNA (miR)-27b in vivo and in vitro. Methods Sprague-Dawley rats were fed a high-fat (HF) diet and 3T3-L1 pre-adipocytes were differentiated into mature white adipocytes. Rats and mature adipocytes were then treated with different doses of liraglutide. The mRNA and protein levels of browning-associated proteins, including uncoupling protein 1 (UCP1), PR domain containing 16 (PRDM16), CCAAT enhancer binding protein β (CEBPβ), cell death-inducing DFFA-like effector A (CIDEA) and peroxisome proliferator-activated receptor-γ-coactivator 1α (PGC-1α), were detected using quantitative real-time polymerase chain reaction and Western blotting. Results Liraglutide decreased body weight and reduced the levels of blood glucose, triglyceride and low-density lipoprotein cholesterol in HF diet-fed rats. Liraglutide increased the levels of UCP1, PRDM16, CEBPβ, CIDEA and PGC-1α in vivo and vitro. The levels of miR-27b were upregulated in HF diet-fed rats, whereas liraglutide reduced the levels of miR-27b. In vitro, overexpression of miR-27b decreased the mRNA and protein levels of UCP1, PRDM16, CEBPβ, CIDEA and PGC-1α. Transfection with the miR-27b mimics attenuated the effect of liraglutide on the browning of white adipocytes. Conclusion Liraglutide induced browning of white adipose through regulation of miR-27b.


Sign in / Sign up

Export Citation Format

Share Document