scholarly journals Serum Natriuretic Peptides as Differential Biomarkers Allowing for the Distinction between Physiologic and Pathologic Left Ventricular Hypertrophy

2016 ◽  
Vol 45 (2) ◽  
pp. 344-352 ◽  
Author(s):  
Michael E. Dunn ◽  
Thomas G. Manfredi ◽  
Kevin Agostinucci ◽  
Steven K. Engle ◽  
Josh Powe ◽  
...  

Given the proven utility of natriuretic peptides as serum biomarkers of cardiovascular maladaptation and dysfunction in humans and the high cross-species sequence conservation of atrial natriuretic peptides, natriuretic peptides have the potential to serve as translational biomarkers for the identification of cardiotoxic compounds during multiple phases of drug development. This work evaluated and compared the response of N-terminal proatrial natriuretic peptide (NT-proANP) and N-terminal probrain natriuretic peptide (NT-proBNP) in rats during exercise-induced and drug-induced increases in cardiac mass after chronic swimming or daily oral dosing with a peroxisome proliferator-activated receptor γ agonist. Male Sprague-Dawley rats aged 8 to 10 weeks were assigned to control, active control, swimming, or drug-induced cardiac hypertrophy groups. While the relative heart weights from both the swimming and drug-induced cardiac hypertrophy groups were increased 15% after 28 days of dosing, the serum NT-proANP and NT-proBNP values were only increased in association with cardiac hypertrophy caused by compound administration. Serum natriuretic peptide concentrations did not change in response to adaptive physiologic cardiac hypertrophy induced by a 28-day swimming protocol. These data support the use of natriuretic peptides as fluid biomarkers for the distinction between physiological and drug-induced cardiac hypertrophy.

1996 ◽  
Vol 271 (3) ◽  
pp. H906-H913 ◽  
Author(s):  
C. P. Regan ◽  
P. G. Anderson ◽  
S. P. Bishop ◽  
K. H. Berecek

To determine the role of the renin-angiotensin system (RAS) on cardiovascular remodeling in a pressure overload model of cardiac hypertrophy, a subdiaphragmatic aortic band was placed in adult male, Sprague-Dawley rats. Rats were left untreated (AB) or given captopril (Cap, 400 mg/l) (AB-Cap). Sham-operated controls were either left untreated (S) or given Cap (S-Cap). After 4 wk, rats were catheterized, and carotid and femoral mean arterial pressures (CMAP and FMAP in mmHg, respectively) were recorded. Hearts were isolated, and minimal coronary resistance (MCR) was determined. Hearts were then perfusion fixed, total and regional heart weights were recorded, and sections were processed for vessel morphology. Changes in coronary artery medical thickness and perivascular fibrosis were assessed by quantitative image analysis. CMAP was significantly higher in AB and AB-Cap than S or S-Cap rats (P < 0.05). There was no difference in FMAP in AB vs. S rats, but AB-Cap and S-Cap had lower FMAP values than S rats. Total heart weight and left ventricular weight-to-body weight ratios were increased in AB and AB-Cap rats compared with S and S-Cap rats (P < 0.05). MCR of AB was greater than S and S-Cap rats. MCR of AB-Cap rats was significantly greater than S and S-Cap rats but was significantly less than AB rats. In coronary vessels, medial thickness was greatest in AB, whereas there was no difference among AB-Cap, S, and S-Cap rats. Similarly, the increase in perivascular fibrosis was greatest in AB rats, and there was no difference among AB-Cap, S, and S-Cap rats. These data suggest that the RAS, independent of increased arterial pressure, is critical for the development of the vascular and fibrotic changes that occur in this model of pressure overload hypertrophy.


PPAR Research ◽  
2014 ◽  
Vol 2014 ◽  
pp. 1-6 ◽  
Author(s):  
Yahan Liu ◽  
Xiao Yu Tian ◽  
Yu Huang ◽  
Nanping Wang

Pulmonary arterial hypertension (PAH) is a fatal disease characterized by a progressive increase in pulmonary arterial pressure leading to right ventricular failure and death. Activation of the endothelin (ET)-1 system has been demonstrated in plasma and lung tissue of PAH patients as well as in animal models of PAH. Recently, peroxisome proliferator-activated receptorγ(PPARγ) agonists have been shown to ameliorate PAH. The present study aimed to investigate the mechanism for the antivasoconstrictive effects of rosiglitazone in response to ET-1 in PAH. Sprague-Dawley rats were exposed to chronic hypoxia (10% oxygen) for 3 weeks. Pulmonary arteries from PAH rats showed an enhanced vasoconstriction in response to ET-1. Treatment with PPARγagonist rosiglitazone (20 mg/kg per day) with oral gavage for 3 days attenuated the vasocontractive effect of ET-1. The effect of rosiglitazone was lost in the presence ofL-NAME, indicating a nitric oxide-dependent mechanism. Western blotting revealed that rosiglitazone increasedETBRbut decreasedETARlevel in pulmonary arteries from PAH rats.ETBRantagonist A192621 diminished the effect of rosiglitazone on ET-1-induced contraction. These results demonstrated that rosiglitazone attenuated ET-1-induced pulmonary vasoconstriction in PAH through differential regulation of the subtypes of ET-1 receptors and, thus, provided a new mechanism for the therapeutic use of PPARγagonists in PAH.


2007 ◽  
Vol 293 (1) ◽  
pp. E91-E95 ◽  
Author(s):  
Anne Zanchi ◽  
Abdul G. Dulloo ◽  
Christine Perregaux ◽  
Jean-Pierre Montani ◽  
Michel Burnier

Glitazones are peroxisome proliferator-activated receptor (PPAR)-γ agonists with powerful insulin-sensitizing properties. They promote the development of metabolically active adipocytes that can lead to a substantial gain in fat mass. Telmisartan is an ANG II type 1 receptor antagonist with partial PPAR-γ agonistic properties. Recently, telmisartan has been reported to prevent weight gain and improve insulin sensitivity in diet-induced obese rodents. The goal of this study was to examine the influence of telmisartan on pioglitazone-induced weight gain and insulin-sensitizing properties in the following two models of insulin resistance: a nongenetic model (high-fat-fed Sprague Dawley rats) and the genetically obese fa/ fa Zucker rat. After a 4-wk treatment, the pioglitazone-induced increase in fat mass was modest in the Sprague Dawley rats and severe in the Zucker rats. In both models, these effects were substantially decreased by concomitant treatment with telmisartan. The effects of telmisartan on body weight and fat mass in the Zucker rats were abolished by pair feeding, suggesting that it is the result of a decrease in food intake. Telmisartan did not interfere with the insulin-sensitizing properties of pioglitazone. This study demonstrates that telmisartan attenuates the glitazone-induced increase in fat mass without interfering with its insulin-sensitizing properties.


2008 ◽  
Vol 105 (3) ◽  
pp. 907-914 ◽  
Author(s):  
Keshore R. Bidasee ◽  
Hong Zheng ◽  
Chun-Hong Shao ◽  
Sheeva K. Parbhu ◽  
George J. Rozanski ◽  
...  

The present study was undertaken to assess cardiac function and characterize β-adrenoceptor subtypes in hearts of diabetic rats that underwent exercise training (ExT) after the onset of diabetes. Type 1 diabetes was induced in male Sprague-Dawley rats using streptozotocin. Four weeks after induction, rats were randomly divided into two groups. One group was exercised trained for 3 wk while the other group remained sedentary. At the end of the protocol, cardiac parameters were assessed using M-mode echocardiography. A Millar catheter was also used to assess left ventricular hemodynamics with and without isoproterenol stimulation. β-Adrenoceptors were assessed using Western blots and [3H]dihydroalprenolol binding. After 7 wk of diabetes, heart rate decreased by 21%, fractional shortening by 20%, ejection fraction by 9%, and basal and isoproterenol-induced dP/d t by 35%. β1- and β2-adrenoceptor proteins were reduced by 60% and 40%, respectively, while β3-adrenoceptor protein increased by 125%. Ventricular homogenates from diabetic rats bound 52% less [3H]dihydroalprenolol, consistent with reductions in β1- and β2-adrenoceptors. Three weeks of ExT initiated 4 wk after the onset of diabetes minimized cardiac function loss. ExT also blunted loss of β1-adrenoceptor expression. Interestingly, ExT did not prevent diabetes-induced reduction in β2-adrenoceptor or the increase of β3-adrenoceptor expression. ExT also increased [3H]dihydroalprenolol binding, consistent with increased β1-adrenoceptor expression. These findings demonstrate for the first time that ExT initiated after the onset of diabetes blunts primarily β1-adrenoceptor expression loss, providing mechanistic insights for exercise-induced improvements in cardiac function.


2011 ◽  
Vol 2011 ◽  
pp. 1-12 ◽  
Author(s):  
Rosanna Di Paola ◽  
Francesco Briguglio ◽  
Irene Paterniti ◽  
Emanuela Mazzon ◽  
Giacomo Oteri ◽  
...  

The aim of the present study was to evaluate the contribution of peroxisome proliferator-activated receptor (PPAR-β/δ) in animal model of periodontitis. Male Sprague-Dawley rats were lightly anaesthetized with pentobarbitone (35 mg/kg). Sterile, 2-0 black braided silk thread was placed around the cervix of the lower left first molar and knotted medially. Animals received GW0742 (0.3 mg/kg, 10% DMSO, i.p. after the ligature placement and daily for eight days). At day 8, the gingivomucosal tissue encircling the mandibular first molar was removed. One the eighth day after placement of the ligature, we evaluated (1) NF-κB expression, (2) cytokines expression, (3) iNOS expression, (5) the nitration of tyrosine, (6) apoptosis, and (8) the degree of gingivomucosal tissues injury. Administration of GW0742 significantly decreased all of the parameters of inflammation as described above. Taken together, these results demonstrate that GW0742 exerts an anti-inflammatory role during experimental periodontitis and is able to ameliorate the tissue damage.


2002 ◽  
Vol 103 (s2002) ◽  
pp. 16S-20S ◽  
Author(s):  
Satoshi SAKAI ◽  
Takashi MIYAUCHI ◽  
Yoko IRUKAYAMA-TOMOBE ◽  
Takehiro OGATA ◽  
Katsutoshi GOTO ◽  
...  

Endothelin-1 (ET-1) causes cardiac hypertrophy, and ET receptor antagonists inhibit the development of cardiac hypertrophy in vitro and in vivo. Peroxisome proliferator-activated receptor γ (PPARγ), a member of the family of nuclear receptors, suppresses activator protein-1 (AP-1). We investigated the effects of the thiazolidinediones troglitazone and pioglitazone, activators of PPARγ, on cardiac hypertrophy due to pressure overload provoked by abdominal aortic banding (AB) in rats. Rats were divided into four groups: sham operation with vehicle treatment (n = 5); AB surgery with vehicle treatment (n = 6); AB surgery with troglitazone treatment (100mg·kg-1·day-1; n = 5); and AB surgery with pioglitazone treatment (10mg·kg-1·day-1; n = 8). Treatments were started 7 days before AB surgery, and left ventricular (LV) hypertrophy was assessed 24h after surgery. The ratio of LV weight/body weight (BW) was significantly increased in AB rats compared with sham-operated rats; treatment of AB rats with troglitazone or pioglitazone significantly inhibited the increase in LV weight/BW. Expression of ET-1 mRNA was markedly enhanced in the left ventricles of AB rats; treatment with troglitazone or pioglitazone lowered expression significantly. Suppression of cardiac hypertrophy by pioglitazone treatment was accompanied by a decrease in expression of the gene encoding brain natriuretic factor, a molecular marker for cardiac hypertrophy, in AB rats. Because the ET-1 gene has AP-1 response elements in its 5´-flanking region, the thiazolidinediones troglitazone and pioglitazone may inhibit cardiac hypertrophy partly through suppression of AP-1-induced ET-1 gene up-regulation.


Sign in / Sign up

Export Citation Format

Share Document