A numerical study on the effect of column layout on air distribution and performance of column attachment ventilation

Author(s):  
Haiguo Yin ◽  
Linna Li ◽  
Rui Wu ◽  
Yuanyuan Wang ◽  
Angui Li
Energies ◽  
2020 ◽  
Vol 13 (17) ◽  
pp. 4360
Author(s):  
Umar Nawaz Bhatti ◽  
Salem Bashmal ◽  
Sikandar Khan ◽  
Rached Ben-Mansour

Thermoacoustic refrigerators have huge potential to replace conventional refrigeration systems as an alternative clean refrigeration technology. These devices utilize conversion of acoustic power and heat energy to generate the desired cooling. The stack plays a pivotal role in the performance of Standing Wave Thermoacoustic Refrigerators (SWTARs), as the heat transfer takes place across it. Performance of stacks can be significantly improved by making an arrangement of different materials inside the stack, resulting in anisotropic thermal properties along the length. In the present numerical study, the effect of multi-layered stack on the refrigeration performance of a SWTAR has been evaluated in terms of temperature drop across the stack, acoustic power consumed and device Coefficient of Performance (COP). Two different aspects of multi-layered stack, namely, different material combinations and different lengths of stacked layers, have been investigated. The combinations of four stack materials and length ratios have been investigated. The numerical results showed that multi-layered stacks produce lower refrigeration temperatures, consume less energy and have higher COP value than their homogeneous counterparts. Among all the material combinations of multi-layered stack investigated, stacks composed of a material layer with low thermal conductivity at the ends, i.e., RVC, produced the best performance with an increase of 26.14% in temperature drop value, reduction in the acoustic power consumption by 4.55% and COP enhancement of 5.12%. The results also showed that, for a constant overall length, an increase in length of side stacked material layer results in an increase in values of both temperature drop and COP.


Energies ◽  
2021 ◽  
Vol 14 (23) ◽  
pp. 8130
Author(s):  
Ziwen Dong ◽  
Liting Zhang ◽  
Yongwen Yang ◽  
Qifen Li ◽  
Hao Huang

Stratified air distribution systems are commonly used in large space buildings. The research on the airflow organization of stratified air conditioners is deficient in terms of the analysis of multivariable factors. Moreover, studies on the coupled operation of stratified air conditioners and natural ventilation are few. In this paper, taking a Shanghai Airport Terminal departure hall for the study, air distribution and thermal comfort of the cross-section at a height of 1.6 m are simulated and compared under different working conditions, and the effect of natural ventilation coupling operation is studied. The results show that the air distribution is the most uniform and the thermal comfort is the best (predicted mean vote is 0.428, predicted percentage of dissatisfaction is 15.2%) when the working conditions are 5.9% air supply speed, 11 °C cooling temperature difference and 0° air supply angle. With the coupled operation of natural ventilation, the thermal comfort can be improved from Grade II to Grade I.


2018 ◽  
Vol 140 (10) ◽  
Author(s):  
Feng Wang ◽  
Mauro Carnevale ◽  
Luca di Mare

Computational fluid dynamics (CFD) has been widely adopted in the compressor design process, but it remains a challenge to predict the flow details, performance, and stage matching for multistage, high-speed machines accurately. The Reynolds Averaged Navier-Stokes (RANS) simulation with mixing plane for bladerow coupling is still the workhorse in the industry and the unsteady bladerow interaction is discarded. This paper examines these discarded unsteady effects via deterministic fluxes using semi-analytical and unsteady RANS (URANS) calculations. The study starts from a planar duct under periodic perturbations. The study shows that under large perturbations, the mixing plane produces dubious values of flow quantities (e.g., whirl angle). The performance of the mixing plane can be considerably improved by including deterministic fluxes into the mixing plane formulation. This demonstrates the effect of deterministic fluxes at the bladerow interface. Furthermore, the front stages of a 19-blade row compressor are investigated and URANS solutions are compared with RANS mixing plane solutions. The magnitudes of divergence of Reynolds stresses (RS) and deterministic stresses (DS) are compared. The effect of deterministic fluxes is demonstrated on whirl angle and radial profiles of total pressure and so on. The enhanced spanwise mixing due to deterministic fluxes is also observed. The effect of deterministic fluxes is confirmed via the nonlinear harmonic (NLH) method which includes the deterministic fluxes in the mean flow, and the study of multistage compressor shows that unsteady effects, which are quantified by deterministic fluxes, are indispensable to have credible predictions of the flow details and performance of compressor even at its design stage.


Author(s):  
Yun Zheng ◽  
Xiubo Jin ◽  
Hui Yang ◽  
Qingzhe Gao ◽  
Kang Xu

Abstract The numerical study is performed by means of an in-house CFD code to investigate the effect of circumferential nonuniform tip clearance due to the casing ovalization on flow field and performance of a turbine stage. A method called fast-moving mesh is used to synchronize the non-circular computational domain with the rotation of the rotor row. Four different layouts of the circumferential nonuniform clearance are calculated and evaluated in this paper. The results show that, the circumferential nonuniform clearance could reduce the aerodynamic performance of the turbine. When the circumferential nonuniformity δ reaches 0.4, the aerodynamic efficiency decreases by 0.58 percentage points. Through the analysis of the flow field, it is found that the casing ovalization leads to the difference of the size of the tip clearance in the circumferential direction, and the aerodynamic loss of the position of large tip clearance is greater than that of small tip clearance, which is related to the scale of leakage vortex. In addition, the flow field will become nonuniform in the circumferential direction, especially at the rotor exit, which will adversely affect the downstream flow field.


2019 ◽  
Vol 85 ◽  
pp. 02015 ◽  
Author(s):  
Charles Berville ◽  
Matei-Răzvan Georgescu ◽  
Ilinca Năstase

The current concept of Crew Quarters on board of the International Space Station has several issues according to the crew member’s feedback. Major issues concern noise levels, the accumulation of CO2 and the quality of the air distribution. Our study targets the airflow distribution, to diagnose this issue, we realise a series of numerical simulations (CFD) based on a real scale replica of the Crew Quarters. Simulations were set with a zero-gravity mode and with the theoretical air parameters inside the SSI. The geometry includes a thermal manikin having the neutral posture of a body in the absence of gravity. Numerical simulations were run for the three different air flow rates provided by the current ventilation system. Results have shown that the air distribution inside the Crew Quarter is insufficient for low airflow rates but becomes acceptable for the higher airflow rate, however the higher airflow rate can potentially produce draught discomfort.


2020 ◽  
Vol 15 ◽  
pp. 155892502091561
Author(s):  
Linbo Yan ◽  
Zhengkai Sun ◽  
Han Cheng

In order to study the influence of rainstorm on parachute dropping, the smoothed particle hydrodynamics/arbitrary Lagrangian–Eulerian coupling method is proposed. Finite elements are used to describe the continuous material such as fabric and air flow field, and the smoothed particle hydrodynamics particles are used to describe the discrete raindrops. The coupling between different fluid and structure is realized by penalty function. In order to distinguish the most influential factor of rainstorm environment on parachute, the effects of raindrop field and wind field in rainstorm are studied, respectively. It could be found that the raindrop fields with different droplet sizes have little effect on the parachute’s shape, opening shock, and performance according to the comparative analysis, while the vertical wind field has a great influence on parachute’s deceleration performance. The wind field, not the raindrop field, is the most important factor affecting the parachute’s deceleration performance. The method and conclusions in this article could provide some references for parachute design.


Sign in / Sign up

Export Citation Format

Share Document