Effects of Circumferential Nonuniform Tip Clearance on Flow Field and Performance of a Transonic Turbine

Author(s):  
Yun Zheng ◽  
Xiubo Jin ◽  
Hui Yang ◽  
Qingzhe Gao ◽  
Kang Xu

Abstract The numerical study is performed by means of an in-house CFD code to investigate the effect of circumferential nonuniform tip clearance due to the casing ovalization on flow field and performance of a turbine stage. A method called fast-moving mesh is used to synchronize the non-circular computational domain with the rotation of the rotor row. Four different layouts of the circumferential nonuniform clearance are calculated and evaluated in this paper. The results show that, the circumferential nonuniform clearance could reduce the aerodynamic performance of the turbine. When the circumferential nonuniformity δ reaches 0.4, the aerodynamic efficiency decreases by 0.58 percentage points. Through the analysis of the flow field, it is found that the casing ovalization leads to the difference of the size of the tip clearance in the circumferential direction, and the aerodynamic loss of the position of large tip clearance is greater than that of small tip clearance, which is related to the scale of leakage vortex. In addition, the flow field will become nonuniform in the circumferential direction, especially at the rotor exit, which will adversely affect the downstream flow field.

2021 ◽  
Author(s):  
Yun Zheng ◽  
Xiubo Jin ◽  
Hui Yang ◽  
Qingzhe Gao ◽  
Kang Xu

Author(s):  
H. Furukawa ◽  
M. Hanaki ◽  
T. Watanabe

In concentrically rotating double cylinders consisting of a stationary outer cylinder and a rotating inner cylinder, Taylor vortex flow appears. Taylor vortex flow occurs in journal bearings, various fluid machineries, containers for chemical reaction, and other rotating components. Therefore, the analysis of the flow structure of Taylor vortex flow is highly effective for its control. The main parameters that determine the modes of Taylor vortex flow of a finite length are the aspect ratio Γ, Reynolds number Re. Γ is defined as the ratio of the cylinder length to the gap length between cylinders, and Re is determined on the basis of the angular speed of the inner cylinder. Γ was set to be 3.2, 4.8 and 6.8, and Re to be values in the range from 100 to 1000 at intervals of 100. Thus far, a large number of studies on Taylor vortex flow have been carried out; however, the effects of the differences in initial conditions have not yet been sufficiently clarified. In this study, we changed the initial flow field between the inner and outer cylinders in a numerical analysis, and examined the resulting changes in the mode formation and bifurcation processes. In this study, the initial speed distribution factor α was defined to be a function of the initial flow field and set to be 1.0, 0.999, 0.9 and 0.8 for the calculation. As a result, a difference was observed in the final mode depending on the difference in α for each Γ. From this finding, non-uniqueness, which is a major characteristic of Taylor vortex flow, was confirmed. However, no regularities regarding the difference in mode formation were found and the tendency of the mode formation process was not specified. Moreover, the processes of developing the vortex resulting in different final modes were monitored over time by visual observation. Similar flow behaviors were initially observed after the start of the calculation. Then, a bifurcation point, at which the flow changed to a mode depending on α, was observed, and finally the flow became steady. In addition, there was also a difference in the time taken for the flow to reach the steady state. These findings are based on only visual observation. Accordingly, a more detailed analysis at each lattice point and a comparison of physical quantities, such as kinetic energy and enstrophy, will be our future tasks.


2010 ◽  
Vol 132 (5) ◽  
Author(s):  
Young-Seok Kang ◽  
Shin-Hyoung Kang

It is well-known that nonuniform tip clearance in an axial compressor induces pressure and velocity perturbations along the circumferential direction. This study develops a numerical modeling to predict perturbed flows in an axial compressor with a nonuniform tip clearance and presents a mechanism of the flow redistribution in the axial compressor at design and off-design conditions. The modeling results are compared with CFD results (2006, “Prediction of the Fluid Induced Instability Force of an Axial Compressor,” ASME FEDSM 2006, Miami, FL) not only to validate the present modeling, but also to investigate more detailed flow fields. In an axial compressor, nonuniform tip clearance varies local flow passage area and resultant axial velocity along the circumferential direction. There are small axial velocity differences between maximum and minimum clearances near the design condition, while large pressure differences are investigated according to local locations. However, contribution of the main flow region overrides the tip clearance effect as the flow coefficient deviates from the design condition. Moreover, the flow field redistribution becomes noticeably strong when the off-design effects are incorporated. In case of high flow coefficients, the low relative flow angle near the minimum clearance regions results in a large negative incidence angle and forms a large flow recirculation region and a corresponding large amount of loss occurs near the blade pressure surface. It further promotes strong flow field perturbations at the off-design conditions. The integration of these pressure and blade loading perturbations with a control volume analysis leads to the well-known Alford’s force. Alford’s force is always negative near the design condition; however, it reverses its sign to positive at the high flow coefficients. At the high flow coefficients, tip leakage flow effects lessen, while increased off-design effects amplify blade loading perturbations and a steep increase in Alford’s force. This study enables that nonuniform flow field, and the resultant Alford’s force, which may result in an unstable rotor-dynamic behavior, can be easily evaluated and assessed during the compressor, fan, or blower design process.


Author(s):  
Young-Seok Kang ◽  
Shih-Hyoung Kang

Asymmetric tip clearance in an axial compressor induces pressure and velocity redistributions along the circumferential direction in an axial compressor. This paper presents the mechanism of the flow redistribution due to the asymmetric tip clearance with a simple numerical modeling. The flow field of a rotor of an axial compressor is predicted when an asymmetric tip clearance occurs along the circumferential direction. The modeling results are supported by CFD results not only to validate the present modeling but also to investigate more detailed flow fields. Asymmetric tip clearance makes local flow area and resultant axial velocity vary along the circumferential direction. This flow redistribution ‘seed’ results in a different flow patterns according to the flow coefficient. Flow field redistribution patterns are largely dependent on the local tip clearance performance at low flow coefficients. However, the contribution of the main flow region becomes dominant while the tip clearance effect becomes weak as the flow coefficient increases. The flow field redistribution pattern becomes noticeably strong if a blockage effect is considered when the flow coefficient increases. The relative flow angle at the small clearance region decreases which result in a negative incidence angle at the high flow coefficient. It causes a recirculation region at the blade pressure surface which results in the flow blockage. It promotes the strength of the flow field redistribution at the rotor outlet. These flow pattern changes take an effect on the blade loading perturbations. The integration of blade loading perturbation from control volume of the circumferential momentum analysis leads to well-known Alford’s force. Alford’s force is always negative when the flow blockage effects are excluded. However when the flow blockage effect is incorporated into the modeling, main flow effects on the flow redistribution is also reflected on the Alford’s force at the high flow coefficient. Alford’s force steeply increases as the flow coefficient increases, because of the tip leakage suppression and strong flow redistribution. The predicted results are well agreed to CFD results by Kang and Kang (2006).


Author(s):  
Mahdi Nili-Ahmadabadi ◽  
Ali Hajilouy-Benisi ◽  
Mohammad Durali ◽  
Sayyed Mostafa Motavalli

In this research, the centrifugal compressor of a turbocharger is investigated experimentally and numerically. Performance characteristics of the compressor were obtained experimentally by measurements of rotor speed and flow parameters at the inlet and outlet of the compressor. Three dimensional flow field in the impeller and diffuser was analyzed numerically using a full Navier-Stokes program with SST turbulence model. The performance characteristics of the compressor were obtained numerically, which were then compared with the experimental results. The comparison shows good agreement. Furthermore, the effect of area ratio and tip clearance on the performance parameters and flow field was studied numerically. The impeller area ratio was changed by cutting the impeller exit axial width from an initial value of 4.1 mm to a final value of 5.1 mm, resulting in an area ratio from 0.792 to 0.965. For the rotor with exit axial width of 4.6 mm, performance was investigated for tip clearance of 0.0, 0.5 and 1.0 mm. Results of this simulation at design point showed that the compressor pressure ratio peaked at an area ratio of 0.792 while the efficiency peaked at a higher value of area ratio of 0.878. Also the increment of the tip clearance from 0 to 1 mm resulted in 20 percent efficiency decrease.


Author(s):  
L. Porreca ◽  
T. Behr ◽  
J. Schlienger ◽  
A. I. Kalfas ◽  
R. S. Abhari ◽  
...  

A unique comparative experimental and numerical investigation carried out on two test cases with shroud configurations differing only in the labyrinth seal path, is presented in this paper. The blade geometry and tip clearance is identical in the two test cases. The geometries under investigation are representative of an axial turbine with a full and partial shroud, respectively. Global performance and flow field data were acquired and analyzed. Computational simulations were carried out to complement the investigation and to facilitate the analysis of the steady and unsteady flow measurements. A detailed comparison between the two test cases is presented in terms of flow field analysis and performance evaluation. The analysis focuses on the flow effects reflected on the overall performance in a multi-stage environment. Strong interaction between the cavity flow and the blade tip region of the rotor blades is observed up to the blade mid span. A marked effect of this interaction can be seen in the downstream second stator where different vortex structures are observed. Moreover, in the partial shroud test case, a strong tip leakage vortex is developed from the first rotor and transported through the downstream blade row. A measurable change in the second stage efficiency was observed between the two test cases. In low aspect ratio blades within a multistage environment, small changes in the cavity geometry can have a significant effect on the mainstream flow. The present analysis has shown that an integrated and matched blade-shroud aerodynamic design has to be adopted to reach optimal performances. The additional losses resulting from small variations of the sealing geometry could result in a gain of up to one point in the overall stage efficiency.


Author(s):  
Wei Zhu ◽  
Le Cai ◽  
Songtao Wang ◽  
Zhongqi Wang

A three-dimensional, multi-passage unsteady numerical study was conducted to enhance the understanding of unsteady flow phenomena in the tip region of highly loaded compressors. The first-stage rotor of a three-stage transonic low-reaction compressor was chosen as the computational model. Three different tip clearance sizes were calculated to demonstrate the effect of the tip clearance dimension on the unsteadiness in the rotor tip region. It was found that the unsteadiness existed at the vicinity of the stall point when the tip clearance size was larger than the design value. The unsteadiness in the tip region appeared as a “multi-passage structure” in the nine-passage unsteady simulation and it propagated along the circumferential direction. Tip leakage vortex breakdown was the source of unsteady flow behavior. Besides, special attention was paid to the difference between the conventional transonic rotor and the low-reaction rotor. The scale of the flow separation downstream of the shock wave was controllable for the low-reaction rotor even at near-stall conditions. The boundary layer would reattach to the blade surface due to local axial acceleration. Finally, attempts were made to study the stall mechanism of the low-reaction rotor.


Sign in / Sign up

Export Citation Format

Share Document