Performance simulation and optimization of new radiant floor heating based on micro heat pipe array

Author(s):  
Heran Jing ◽  
Zhenhua Quan ◽  
Ruixue Dong ◽  
Limin Hao ◽  
Yunhan Liu ◽  
...  
2021 ◽  
Vol 1936 (1) ◽  
pp. 012025
Author(s):  
Haiwei Ji ◽  
Yaping Zhang ◽  
Fang Wang ◽  
Jin Zhang

2018 ◽  
Author(s):  
Zeyu Wang ◽  
Yanhua Diao ◽  
Yaohua Zhao ◽  
Chuanqi Chen ◽  
Lin Liang ◽  
...  

Energies ◽  
2021 ◽  
Vol 14 (5) ◽  
pp. 1321
Author(s):  
Yu-Jin Hwang ◽  
Jae-Weon Jeong

The objective of this research is to establish an appropriate operating strategy for a radiant floor heating system that additionally has an air source heat pump for providing convective air heating separately, leading to heating energy saving and thermal comfort in residential buildings. To determine the appropriate optimal operating ratio of each system taking charge of combined heating systems, the energy consumption of the entire system was drawn, and the adaptive floor surface temperature was reviewed based on international standards and literature on thermal comfort. For processing heating loads with radiant floor heating and air source heating systems, the heating capacity of radiant floor heating by 1 °C variation in floor temperature was calculated, and the remaining heating load was handled by the heating capacity of the convective air heating heat pump. Consequently, when the floor temperature was 25 °C, all heating loads were removed by radiant floor heating only. When handling all heating loads with the heat pump, 59.2% less energy was used compared with radiant floor heating only. Considering the local discomfort of the soles of the feet, the floor temperature is expected to be suitable at 22–23 °C, and 31.5–37.6% energy saving compared with those of radiant floor heating alone were confirmed.


2021 ◽  
Vol 39 ◽  
pp. 102624
Author(s):  
Lincheng Wang ◽  
Yaohua Zhao ◽  
Zhenhua Quan ◽  
Jianan Liang

2011 ◽  
Vol 483 ◽  
pp. 603-606
Author(s):  
Tian Han ◽  
Xiao Wei Liu ◽  
Chao Wang

A kind of flat micro heat pipe with glass fiber wick structure is designed and fabricated. The structure of the wick is presented and also the excellence of the structure is described. For the glass fiber wick, the maximum heat transports is calculated by one-dimensional steady governing equations. Experimental testing is performed for the fabricated micro heat pipe in vacuum. The testing results is presented and analyzed.


Sign in / Sign up

Export Citation Format

Share Document