Calcium carbonate-doxorubicin@silica-indocyanine green nanospheres with photo-triggered drug delivery enhance cell killing in drug-resistant breast cancer cells

Nano Research ◽  
2018 ◽  
Vol 11 (6) ◽  
pp. 3385-3395 ◽  
Author(s):  
Wei Wang ◽  
Yang Zhao ◽  
Bei-Bei Yan ◽  
Liang Dong ◽  
Yang Lu ◽  
...  
2020 ◽  
Vol 13 ◽  
Author(s):  
Selin Yılmaz ◽  
Çiğdem İçhedef ◽  
Kadriye Buşra Karatay ◽  
Serap Teksöz

Backgorund: Superparamagnetic iron oxide nanoparticles (SPIONs) have been extensively used for targeted drug delivery systems due to their unique magnetic properties. Objective: In this study, it’s aimed to develop a novel targeted 99mTc radiolabeled polymeric drug delivery system for Gemcitabine (GEM). Methods: Gemcitabine, an anticancer agent, was encapsulated into polymer nanoparticles (PLGA) together with iron oxide nanoparticles via double emulsion technique and then labeled with 99mTc. SPIONs were synthesized by reduction–coprecipitation method and encapsulated with oleic acid for surface modification. Size distribution and the morphology of the synthesized nanoparticles were caharacterized by dynamic light scattering(DLS)and scanning electron microscopy(SEM), respectively. Radiolabeling yield of SPION-PLGAGEM nanoparticles were determined via Thin Layer Radio Chromatography (TLRC). Cytotoxicity of GEM loaded SPION-PLGA were investigated on MDA-MB-231 and MCF7 breast cancer cells in vitro. Results: SEM images displayed that the average size of the drug-free nanoparticles was 40 nm and the size of the drug-loaded nanoparticles was 50 nm. The diameter of nanoparticles were determined as 366.6 nm by DLS, while zeta potential was found as-29 mV. SPION was successfully coated with PLGA, which was confirmed by FTIR. GEM encapsulation efficiency of SPION-PLGA was calculated as 4±0.16 % by means of HPLC. Radiolabeling yield of SPION-PLGA-GEM nanoparticles were determined as 97.8±1.75 % via TLRC. Cytotoxicity of GEM loaded SPION-PLGA were investigated on MDA-MB-231 and MCF7 breast cancer cells. SPION-PLGA-GEM showed high uptake on MCF-7, whilst incorporation rate was increased for both cell lines which external magnetic field application. Conclusion: 99mTc labeled SPION-PLGA nanoparticles loaded with GEM may overcome some of the obstacles in anti-cancer drug delivery because of their appropriate size, non-toxic, and supermagnetic characteristics.


2021 ◽  
Vol 20 ◽  
pp. 153303382110278
Author(s):  
Yayan Yang ◽  
Qian Feng ◽  
Chuanfeng Ding ◽  
Wei Kang ◽  
Xiufeng Xiao ◽  
...  

Although Epirubicin (EPI) is a commonly used anthracycline for the treatment of breast cancer in clinic, the serious side effects limit its long-term administration including myelosuppression and cardiomyopathy. Nanomedicines have been widely utilized as drug delivery vehicles to achieve precise targeting of breast cancer cells. Herein, we prepared a DSPE-PEG nanocarrier conjugated a peptide, which targeted the breast cancer overexpression protein Na+/K+ ATPase α1 (NKA-α1). The nanocarrier encapsulated the EPI and grafted with the NKA-α1 targeting peptide through the click reaction between maleimide and thiol groups. The EPI was slowly released from the nanocarrier after entering the breast cancer cells with the guidance of the targeting NKA-α1 peptide. The precise and controllable delivery and release of the EPI into the breast cancer cells dramatically inhibited the cells proliferation and migration in vitro and suppressed the tumor volume in vivo. These results demonstrate significant prospects for this nanocarrier as a promising platform for numerous chemotherapy drugs.


RSC Advances ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 4818-4828
Author(s):  
Puja Patel ◽  
Devan Umapathy ◽  
Selvambigai Manivannan ◽  
Vinita Manimaran Nadar ◽  
Rajiu Venkatesan ◽  
...  

In recent years, the development of a nano-conjugate system for drug delivery applications has gained attention among researchers.


RSC Advances ◽  
2021 ◽  
Vol 11 (16) ◽  
pp. 9076-9085
Author(s):  
Kanchan Yadav ◽  
Megha Das ◽  
Nurul Hassan ◽  
Archana Mishra ◽  
Jayeeta Lahiri ◽  
...  

A novel nanodot-using protein has been synthesized for the live cell imaging and drug delivery of melatonin in breast cancer cells. Its unique properties hold potential for various biomedical applications in the field of bioimaging and drug delivery.


2012 ◽  
Vol 315 (2) ◽  
pp. 153-160 ◽  
Author(s):  
Till Krech ◽  
Elisa Scheuerer ◽  
Robert Geffers ◽  
Hans Kreipe ◽  
Ulrich Lehmann ◽  
...  

2019 ◽  
Vol 4 ◽  
Author(s):  
Phat Do

Breast cancer (BC) is the second most commonly diagnosed cancer in women in the world. In 2018, there were more than 2 million new diagnosis. It is estimated that1 in 8 women will develop invasive breast cancer over the course of her lifetime. Traditional treatments of BC include surgery, radiation, and chemotherapy therapy; however, these treatments are non-specific and potentially kill peripheral, healthy cells. More specific treatments are needed, most notably to target a unique feature of the cancer cells. Interestingly, 70% of BC cells upregulate estradiol-dependent pathway, a characteristic essential for rapid cell growth. Current BC drugs, such as Tamoxifen, Faslodex, or Femarahave targeted this pathway to preferentially kill BC cells. However, the problems with these drugs are two-fold. (1) Drugs produce considerable side effects. For example, Femera causes considerable musculoskeletal failures. Tamoxifen is also shown to produce secondary cancer growth, such as endometrial cancer. (2) Breast cancer cells resist drugs very quickly. For instance, one third of women who are treated with Tamoxifen for five years relapse within fifteen years. The resulting tumor then become resistant to Tamoxifen treatment. For these two reasons, there is a need for new chemotherapeutic drugs. Our research group studies a novel estrogen-receptor targeting drug: Estradiol-R-Melex. This compound has the estradiol molecule linked to a DNA alkylating agent, Melex. We connected the two moieties using a linker consisting of various lengths, i.e., one, two, and three methyl groups. The linker length variation is to optimize the cell killing property of our small drug molecule. We hypothesize that Est-n-Melex enters the ER positive cancer cells more rapidly than ER-normal cells.


2019 ◽  
Vol 7 (39) ◽  
pp. 6048-6063 ◽  
Author(s):  
Mohd Mughees ◽  
Mohd Samim ◽  
Yadhu Sharma ◽  
Saima Wajid

The shortcomings of the currently available anti-breast cancer agents compel the development of the safer targeted drug delivery for the treatment of breast cancer.


Author(s):  
Xitao Gao ◽  
Mei Wang ◽  
Yanyan Zhang ◽  
Zhi Xu ◽  
Jiaji Ding ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document