Deep-elliptical-silver-nanowell arrays (d-EAgNWAs) fabricated by stretchable imprinting combining colloidal lithography: A highly sensitive plasmonic sensing platform

Nano Research ◽  
2019 ◽  
Vol 12 (4) ◽  
pp. 845-853
Author(s):  
Xueyao Liu ◽  
Wendong Liu ◽  
Bai Yang
Sensors ◽  
2021 ◽  
Vol 21 (11) ◽  
pp. 3776
Author(s):  
Libin Sun ◽  
Douglas Conrad ◽  
Drew A. Hall ◽  
Kurt D. Benkstein ◽  
Steve Semancik ◽  
...  

A plasmonic sensing platform was developed as a noninvasive method to monitor gas-phase biomarkers related to cystic fibrosis (CF). The nanohole array (NHA) sensing platform is based on localized surface plasmon resonance (LSPR) and offers a rapid data acquisition capability. Among the numerous gas-phase biomarkers that can be used to assess the lung health of CF patients, acetaldehyde was selected for this investigation. Previous research with diverse types of sensing platforms, with materials ranging from metal oxides to 2-D materials, detected gas-phase acetaldehyde with the lowest detection limit at the µmol/mol (parts-per-million (ppm)) level. In contrast, this work presents a plasmonic sensing platform that can approach the nmol/mol (parts-per-billion (ppb)) level, which covers the required concentration range needed to monitor the status of lung infection and find pulmonary exacerbations. During the experimental measurements made by a spectrometer and by a smartphone, the sensing examination was initially performed in a dry air background and then with high relative humidity (RH) as an interferent, which is relevant to exhaled breath. At a room temperature of 23.1 °C, the lowest detection limit for the investigated plasmonic sensing platform under dry air and 72% RH conditions are 250 nmol/mol (ppb) and 1000 nmol/mol (ppb), respectively.


2019 ◽  
Vol 283 ◽  
pp. 163-171 ◽  
Author(s):  
Xiaomeng Dou ◽  
Weiming Hao ◽  
Xiangqing Li ◽  
Lixia Qin ◽  
Shi-Zhao Kang

2022 ◽  
Author(s):  
Qiaoling Wu ◽  
Chun Ji ◽  
Lingli Zhang ◽  
Qingli Shi ◽  
Yuangen Wu ◽  
...  

The work presented here describes a highly sensitive and simple electrochemical sensor for the detection of Sudan I dye based on MoS2 heterogeneous nanosheets (1T@2H-MoS2) and carboxylated carbon nanotubes (cMWCNTs)...


2020 ◽  
Vol 44 (37) ◽  
pp. 15975-15982
Author(s):  
Xueliang Niu ◽  
Weili Zhang ◽  
Yan Huang ◽  
Likai Wang ◽  
Zhongfang Li ◽  
...  

A novel electrochemical method for highly sensitive determination of baicalein was developed with Au@Ag/3DNGA as signal amplifier.


2017 ◽  
Vol 9 (6) ◽  
pp. 1011-1017 ◽  
Author(s):  
Zhimin Liu ◽  
Fang Zhang ◽  
Lin Cui ◽  
Kang Wang ◽  
Haijun Zhan

A novel electrochemiluminescence sensing platform for the sensitive detection of chlorpromazine (CPZ) was fabricated based on a Ru(bpy)32+/carbon quantum dots/gelatin composite film.


Sign in / Sign up

Export Citation Format

Share Document