scholarly journals Customised pressure profiles of made-to-measure sports compression garments

2021 ◽  
Vol 24 (1) ◽  
Author(s):  
Jack Ashby ◽  
Martin Lewis ◽  
Roberto Sanchis-Sanchis ◽  
Caroline Sunderland ◽  
Laura A. Barrett ◽  
...  

AbstractThe purpose of this study was to make made-to-measure compression garments that elicit pressures within and below clinical standards. The study also examined whether pressures and gradients can be replicated within and between participants’ legs, and between separate compression garment conditions. Ten males volunteered to participate. Based on three-dimensional scans of the participants’ lower body, three different made-to-measure garments were manufactured: control, symmetrical and asymmetrical. Garment pressures were assessed from the malleolus to the gluteal fold using a pressure monitoring device. A root mean squared difference analysis was used to calculate the in vivo linear graduation parameters. Linear regression showed that peak pressure at the ankle in the left and right leg were: control garment, 13.5 ± 2.3 and 12.9 ± 2.6; asymmetrical garment, 12.7 ± 2.5 and 26.3 ± 3.4; symmetrical garment, 27.7 ± 2.2 and 27.5 ± 1.6 (all mmHg, mean ± standard deviation). Pressure reduction from the ankle to the gluteal fold in the left and right leg were: control, 8.9 ± 3.5 and 7.4 ± 3.0; asymmetrical, 7.8 ± 3.9 and 21.9 ± 3.2; symmetrical, 25.0 ± 4.1 and 22.3 ± 3.6 (all mmHg, mean ± standard deviation). Made-to-measure compression garments can be made to elicit pressures within and below clinical standards, and to elicit equivalent pressures and gradients in different participants.

2018 ◽  
Vol 88 (17) ◽  
pp. 1915-1930 ◽  
Author(s):  
Rong Liu ◽  
Terence T Lao ◽  
Trevor J Little ◽  
Xinbo Wu ◽  
Xiao Ke

Textile-based compression interventions (e.g. compression stockings and bandages), as an essential “source of pressure”, have impacted the effectiveness of pressure dosage delivery. The homogeneous structures of traditional compression shells generate highly uneven pressure distributions around leg geometrics in a passive mode, resulting in side effects and uncomfortable wearing perception. With this in mind, new heterogeneous compression sleeves with hybrid elastic properties were fabricated utilizing advanced three-dimensional seamless knitting technology and a unique laid-in structural design. PicoPress pressure assessment revealed in vivo that the developed heterogeneous compression shells with appropriate configurations for the lower limbs demonstrated the capability to proactively reshape skin pressures around leg cross-sections via calibrated proportions of segments with hybrid elastic moduli. The reduced anterior peak focal pressures and increased pressures at muscle-dominated posterior calves together provided a promising measure to enhance pressure function and user compliance in practice. The results will contribute to the development of a new generation of heterogeneous compression stockings with “bi-axial” pressure profiles for improved compression performance in extensive applications.


2021 ◽  
pp. 0887302X2199931
Author(s):  
Kristina Brubacher ◽  
David Tyler ◽  
Phoebe Apeagyei ◽  
Prabhuraj Venkatraman ◽  
Andrew Mark Brownridge

In this study, we evaluated the feasibility of using the virtual fit pressure map in a clothing-specific CAD program to predict pressures applied by sports compression garments by analyzing pressure prediction accuracy and process practicability. In wearer trials with whole-body compression sportswear, we measured in vivo pressures and compared them to virtual pressures recorded from the virtual fit pressure maps of the garments fitted to 13 participants’ body scan avatars. No clear correlations between virtual and in vivo pressures were identified and problems in the virtual fit process became apparent. The CAD software currently lacks a link to physical fabric, seam and component properties, which inhibits its use for predictions in new product development. By considering all simulation settings and assessing the numerical pressure prediction capability of a clothing-specific CAD program, this research provides a step forward in assessing the limitations of virtual fit for technical product development.


2020 ◽  
Vol 14 ◽  
Author(s):  
Jinwoo Hong ◽  
Hyuk Jin Yun ◽  
Gilsoon Park ◽  
Seonggyu Kim ◽  
Cynthia T. Laurentys ◽  
...  

Fetal magnetic resonance imaging (MRI) has the potential to advance our understanding of human brain development by providing quantitative information of cortical plate (CP) development in vivo. However, for a reliable quantitative analysis of cortical volume and sulcal folding, accurate and automated segmentation of the CP is crucial. In this study, we propose a fully convolutional neural network for the automatic segmentation of the CP. We developed a novel hybrid loss function to improve the segmentation accuracy and adopted multi-view (axial, coronal, and sagittal) aggregation with a test-time augmentation method to reduce errors using three-dimensional (3D) information and multiple predictions. We evaluated our proposed method using the ten-fold cross-validation of 52 fetal brain MR images (22.9–31.4 weeks of gestation). The proposed method obtained Dice coefficients of 0.907 ± 0.027 and 0.906 ± 0.031 as well as a mean surface distance error of 0.182 ± 0.058 mm and 0.185 ± 0.069 mm for the left and right, respectively. In addition, the left and right CP volumes, surface area, and global mean curvature generated by automatic segmentation showed a high correlation with the values generated by manual segmentation (R2 > 0.941). We also demonstrated that the proposed hybrid loss function and the combination of multi-view aggregation and test-time augmentation significantly improved the CP segmentation accuracy. Our proposed segmentation method will be useful for the automatic and reliable quantification of the cortical structure in the fetal brain.


Author(s):  
D. Reis ◽  
B. Vian ◽  
J. C. Roland

Wall morphogenesis in higher plants is a problem still open to controversy. Until now the possibility of a transmembrane control and the involvement of microtubules were mostly envisaged. Self-assembly processes have been observed in the case of walls of Chlamydomonas and bacteria. Spontaneous gelling interactions between xanthan and galactomannan from Ceratonia have been analyzed very recently. The present work provides indications that some processes of spontaneous aggregation could occur in higher plants during the formation and expansion of cell wall.Observations were performed on hypocotyl of mung bean (Phaseolus aureus) for which growth characteristics and wall composition have been previously defined.In situ, the walls of actively growing cells (primary walls) show an ordered three-dimensional organization (fig. 1). The wall is typically polylamellate with multifibrillar layers alternately transverse and longitudinal. Between these layers intermediate strata exist in which the orientation of microfibrils progressively rotates. Thus a progressive change in the morphogenetic activity occurs.


Author(s):  
S. Trachtenberg ◽  
D. J. DeRosier

The bacterial cell is propelled through the liquid environment by means of one or more rotating flagella. The bacterial flagellum is composed of a basal body (rotary motor), hook (universal coupler), and filament (propellor). The filament is a rigid helical assembly of only one protein species — flagellin. The filament can adopt different morphologies and change, reversibly, its helical parameters (pitch and hand) as a function of mechanical stress and chemical changes (pH, ionic strength) in the environment.


Author(s):  
Greg V. Martin ◽  
Ann L. Hubbard

The microtubule (MT) cytoskeleton is necessary for many of the polarized functions of hepatocytes. Among the functions dependent on the MT-based cytoskeleton are polarized secretion of proteins, delivery of endocytosed material to lysosomes, and transcytosis of integral plasma membrane (PM) proteins. Although microtubules have been shown to be crucial to the establishment and maintenance of functional and structural polarization in the hepatocyte, little is known about the architecture of the hepatocyte MT cytoskeleton in vivo, particularly with regard to its relationship to PM domains and membranous organelles. Using an in situ extraction technique that preserves both microtubules and cellular membranes, we have developed a protocol for immunofluorescent co-localization of cytoskeletal elements and integral membrane proteins within 20 µm cryosections of fixed rat liver. Computer-aided 3D reconstruction of multi-spectral confocal microscope images was used to visualize the spatial relationships among the MT cytoskeleton, PM domains and intracellular organelles.


2009 ◽  
Vol 30 (05) ◽  
pp. 432-438 ◽  
Author(s):  
Akira Goto ◽  
Hisao Moritomo ◽  
Tomonobu Itohara ◽  
Tetsu Watanabe ◽  
Kazuomi Sugamoto

Sign in / Sign up

Export Citation Format

Share Document