scholarly journals Assessment of Oxidative DNA Damage by Alkaline Comet Assay in Human Essential Hypertension

2015 ◽  
Vol 31 (2) ◽  
pp. 185-193 ◽  
Author(s):  
P. Subash
2019 ◽  
Vol 12 (2) ◽  
pp. 163-172 ◽  
Author(s):  
D. Rašić ◽  
D. Želježić ◽  
N. Kopjar ◽  
D. Kifer ◽  
M. Šegvić Klarić ◽  
...  

The study aimed to check whether ochratoxin A (OTA) and citrinin (CIT) increase DNA damage in the kidney and liver of male Wistar rats (alkaline comet assay), clarify the oxidative nature of DNA damage (hOGG1-modified comet assay), and verify whether resveratrol (RSV) could ameliorate OTA+CIT-induced genotoxicity. Rats were treated orally with OTA (0.125 and 0.250 mg/kg bodyweight (bw)) and CIT (2 mg/kg bw), OTA+CIT combinations and OTA+CIT+RSV (0.250+2+20 mg/kg bw) for 21 days. Both alkaline and hOGG1-modified comet assay showed that DNA damage was more severe in rat kidneys than in liver following mycotoxin treatment. Alkaline comet assay revealed a higher intensity of DNA damage, particularly as measured by tail intensity in the kidneys. Both tail length and tail intensity were OTA dose-dependent, but in combined OTA+CIT treatment these values were similar to CIT alone and lower than in animals treated with single OTA, possibly due to induction of apoptosis. hOGG1-modified comet showed that OTA+CIT evoked greater oxidative DNA damage than single mycotoxins. RSV did not reduce DNA damage measured by alkaline comet assay, but hOGG1-modified comet showed that RSV ameliorated OTA+CIT genotoxicity in the kidneys. Apart from oxidative stress, other mechanisms of DNA damage are involved in OTA and CIT genotoxicity. In rat kidneys RSV can reduce but not overcome oxidative DNA damage induced by combined OTA and CIT.


2020 ◽  
Vol 20 (3) ◽  
pp. 453-463
Author(s):  
Svetlana Yagubova ◽  
Aliy Zhanataev ◽  
Rita Ostrovskaya ◽  
Еlena Anisina ◽  
Тatiana Gudasheva ◽  
...  

Background: NGF deficiency is one of the reasons for reduced β-cells survival in diabetes. Our previous experiments revealed the ability of low-weight NGF mimetic, GK-2, to reduce hyperglycaemia in a model of advanced diabetes. The increase in DNA damage in advanced diabetes was repeatedly reported, while there were no data about DNA damage in the initial diabetes. Aim: The study aimed to establish whether DNA damage occurs in initial diabetes and whether GK-2 is able to overcome the damage. Methods: The early-stage diabetes was modelled in Balb/c mice by streptozotocin (STZ) (130 mg/kg, i.p.). GK-2 was administered at a dose of 0.5 mg/kg, i.p., subchronically. The evaluation of DNA damage was performed using the alkaline comet assay; the percentage of DNA in the tail (%TDNA) and the percentage of the atypical DNA comets (“ghost cells”) were determined. Results: STZ at this subthreshold dose produced a slight increase in glycemia and MDA. Meanwhile, pronounced DNA damage was observed, concerning mostly the percentage of “ghost cells” in the pancreas, the liver and kidneys. GK-2 attenuated the degree of hyperglycaemia and reduced the % of “ghost cells” and %TDNA in all the organs examined; this effect continued after discontinuation of the therapy. Conclusion: Early-stage diabetes is accompanied by DNA damage, manifested by the increase of “ghost cells” percentage. The severity of these changes significantly exceeds the degree of hyperglycaemia and MDA accumulation. GK-2 exerts an antihyperglycaemic effect and attenuates the degree of DNA damage. Our results indicate that the comet assay is a highly informative method for search of antidiabetic medicines.


Author(s):  
Banu Aykanat ◽  
Gonca Cakmak Demircigil ◽  
Kibriya Fidan ◽  
Necla Buyan ◽  
Kaan Gulleroglu ◽  
...  

2014 ◽  
Vol 7 (Suppl 1) ◽  
pp. P12
Author(s):  
Avani Patel ◽  
Mihir Shah ◽  
Pinaki Patel ◽  
Trupti Patel

Sign in / Sign up

Export Citation Format

Share Document