ghost cells
Recently Published Documents


TOTAL DOCUMENTS

68
(FIVE YEARS 10)

H-INDEX

16
(FIVE YEARS 0)

Author(s):  
Hardy Ebling ◽  
Victorio De Costa ◽  
Raul Fernandes Aguirre ◽  
Ermeto Meller

The authors presents two cases of cystic odontoma with aberrant keratinization (ghost cells) and areas of mineralization of the odontogenic epithelium.


Author(s):  
M. Semplice ◽  
E. Travaglia ◽  
G. Puppo

AbstractWe address the issue of point value reconstructions from cell averages in the context of third-order finite volume schemes, focusing in particular on the cells close to the boundaries of the domain. In fact, most techniques in the literature rely on the creation of ghost cells outside the boundary and on some form of extrapolation from the inside that, taking into account the boundary conditions, fills the ghost cells with appropriate values, so that a standard reconstruction can be applied also in the boundary cells. In Naumann et al. (Appl. Math. Comput. 325: 252–270. 10.1016/j.amc.2017.12.041, 2018), motivated by the difficulty of choosing appropriate boundary conditions at the internal nodes of a network, a different technique was explored that avoids the use of ghost cells, but instead employs for the boundary cells a different stencil, biased towards the interior of the domain. In this paper, extending that approach, which does not make use of ghost cells, we propose a more accurate reconstruction for the one-dimensional case and a two-dimensional one for Cartesian grids. In several numerical tests, we compare the novel reconstruction with the standard approach using ghost cells.


2021 ◽  
Author(s):  
Antonio Travaglino ◽  
Antonio Raffone ◽  
Daniela Russo ◽  
Elia Guadagno ◽  
Sara Pignatiello ◽  
...  

AbstractThe nature of endometrial morular metaplasia (MorM) is still unknown. The nuclear β-catenin accumulation and the not rare ghost cell keratinization suggest a similarity with hard keratin-producing odontogenic and hair matrix tumors rather than with squamous differentiation. We aimed to compare MorM to hard keratin-producing tumors. Forty-one hard keratin-producing tumors, including 26 hair matrix tumors (20 pilomatrixomas and 6 pilomatrix carcinomas) and 15 odontogenic tumors (adamantinomatous craniopharyngiomas), were compared to 15 endometrioid carcinomas with MorM with or without squamous/keratinizing features. Immunohistochemistry for β-catenin, CD10, CDX2, ki67, p63, CK5/6, CK7, CK8/18, CK19, and pan-hard keratin was performed; 10 cases of endometrioid carcinomas with conventional squamous differentiation were used as controls. In adamantinomatous craniopharyngiomas, the β-catenin-accumulating cell clusters (whorl-like structures) were morphologically similar to MorM (round syncytial aggregates of bland cells with round-to-spindled nuclei and profuse cytoplasm), with overlapping squamous/keratinizing features (clear cells with prominent membrane, rounded squamous formations, ghost cells). Both MorM and whorl-like structures consistently showed positivity for CD10 and CDX2, with low ki67; cytokeratins pattern was also overlapping, although more variable. Hard keratin was focally/multifocally positive in 8 MorM cases and focally in one conventional squamous differentiation case. Hair matrix tumors showed no morphological or immunophenotypical overlap with MorM. MorM shows wide morphological and immunophenotypical overlap with the whorl-like structures of adamantinomatous craniopharyngiomas, which are analogous to enamel knots of tooth development. This suggests that MorM might be an aberrant mimic of odontogenic differentiation.


2021 ◽  
pp. 76-78
Author(s):  
Reema Raina ◽  
Nikita Gulati ◽  
Saurabh Juneja ◽  
Devi Charan Shetty

Cellular identities in the past have been based on the structural and functional aspects. Proper delineation of cellular structure occasionally could be ambiguous because of their varied existence either structurally similar or functionally dissimilar or vice versa. “Ghost cells”- is an area which is entailed by controversies allocated to their functionality and appearance. In odontogenic lesions they are considered as the enlarged epithelial cells with central space consequential to lost nucleus. Many authors have documented on the histogenesis and formation of ghost cells yet nothing relevant till date. This article is an attempt to concise the literature in precise manner to elaborate the ghost cell origin in histopathologic arena.


2021 ◽  
Vol 2021 ◽  
pp. 1-8
Author(s):  
Nawal Abd El-Baky ◽  
Raoufa Ahmed Abdel Rahman ◽  
Mona Mohammed Sharaf ◽  
Amro Abd Al Fattah Amara

After introducing the idea of using concentrations equal to or less than the minimum inhibition concentration (MIC) of some active chemical compounds for evacuating microbial cells, different types of microbes were evacuated. The original protocol was given the name sponge-like protocol and then was reduced and modified from a microorganism to another to prepare microbial ghosts for various applications such as immunological applications, drug delivery, and isolation of DNA and protein. Fungal pathogens that infect plants critically affect cost effectiveness, quality, and quantity of their production. They kill plant cells and/or cause plant stress. Plant fungal infections can originate from many sources such as infected soil, seeds, or crop debris causing diseases and quality losses around the world with billions of US dollars annually as costs of the associated productivity loss. This study focused on the application of the sponge-like protocol in protecting in vitro tissue cultures of plants against fungal pathogens. This can be useful for research purposes or may be developed to be introduced in field applications. Aspergillus flavus and Aspergillus niger infection in tissue culture of jojoba (Simmondsia chinensis (Link) Schn.) was used as a model to establish the employment of this protocol to control plant fungal diseases. The best conditions for A. flavus and A. niger ghosts production previously mapped by randomization experimental design (reduced Plackett–Burman experimental design) were used to prepare fungal ghosts. SDS, NaOH, NaHCO3, and H2O2 were used in their MIC (+1 level) or minimum growth concentration (MGC, −1 level) according to the determined optimal experimental design. The release of both of DNA and protein from the fungal cells was evaluated spectrophotometrically at 260nm and 280nm, respectively, as an indicator for cell loss of their cytoplasm. Fungal ghost cells were also examined by transmission electron microscopy. After confirming the preparation of high-quality fungal ghost cells, the same conditions were mimicked to control plant fungal infection. Jojoba grown in tissue culture was sprayed with fungal cells (about 103 CFU) as a control experiment or fungal cells followed by treatment with solution (a) represents the fungal ghost cells formation calculated critical concentration (FGCCC) of SDS, NaOH, and NaHCO3 and then treatment with solution (b) represents H2O2 FGCCC. The plant was examined on day 0 (plant grown before any infection or infection followed by treatment), day 5 (plant at day 5 after infection or infection followed by treatment), and day 10 (plant at day 10 after infection or infection followed by treatment). We observed fungal growth in case of control experiments at days 5 and 10 on the tissue culture medium, as well as plant, and the absence of any fungal growth in case of plant treated with FGCCC even after day 10. We recommend using this FGCCC in the form of chemical spraying formulation to treat the plants aiming to control different plant fungal infections in in vitro tissue culture systems or applied in field.


2020 ◽  
Vol 2020 ◽  
pp. 1-11
Author(s):  
Gabriela N. Tenea

Protecting foods from contamination applying peptides produced by lactic acid bacteria is a promising strategy to increase the food quality and safety. Interacting with the pathogen membranes might produce visible changes in shape or cell wall damage. Previously, we showed that the peptides produced by Lactobacillus plantarum UTNGt2, Lactobacillus plantarum UTNCys5-4, and Lactococcus lactis subsp. lactis UTNGt28 exhibit a broad spectrum of antibacterial activity against several foodborne pathogens in vitro. In this study, their possible mode of action against the commensal microorganism Salmonella enterica subsp. enterica ATCC51741 was investigated. The target membrane permeability was determined by detection of beta-galactosidase release from ONPG (o-nitro-phenyl-L-D-galactoside) substrate and changes in the whole protein profile indicating that the peptide extracts destroy the membrane integrity and may induce breaks in membrane proteins to some extent. The release of aromatic molecules such as DNA/RNA was detected after the interaction of Salmonella with the peptide extract. Transmission electronic microscopy (TEM) micrographs depicted at least four simultaneous secondary events after the peptide extract treatment underlying their antimicrobial actions, including morphological alterations of the membrane. Spheroplast and filament formation, vacuolation, and DNA relaxation were identified as the principal events from the Gt2 and Cys5-4 peptide extracts, while Gt28 induced the formation of ghost cells by release of cytoplasmic content, filaments, and separation of cell envelope layers. Gel retarding assays indicate that the Gt2 and Gt28 peptide extracts are clearly binding the Salmonella DNA, while Cys5-4 partially interacted with Salmonella genomic DNA. These results increased our knowledge about the inhibitory mechanism employed by several peptide extracts from native lactic acid bacteria against Salmonella. Further, we shall develop peptide-based formulation and evaluate their biocontrol effect in the food chains.


2020 ◽  
Vol 15 (4) ◽  
pp. 1900239
Author(s):  
Malte Schöps ◽  
Johanna C. Clauser ◽  
Matthias F. Menne ◽  
Dennis Faßbänder ◽  
Thomas Schmitz‐Rode ◽  
...  

2020 ◽  
Vol 20 (3) ◽  
pp. 453-463
Author(s):  
Svetlana Yagubova ◽  
Aliy Zhanataev ◽  
Rita Ostrovskaya ◽  
Еlena Anisina ◽  
Тatiana Gudasheva ◽  
...  

Background: NGF deficiency is one of the reasons for reduced β-cells survival in diabetes. Our previous experiments revealed the ability of low-weight NGF mimetic, GK-2, to reduce hyperglycaemia in a model of advanced diabetes. The increase in DNA damage in advanced diabetes was repeatedly reported, while there were no data about DNA damage in the initial diabetes. Aim: The study aimed to establish whether DNA damage occurs in initial diabetes and whether GK-2 is able to overcome the damage. Methods: The early-stage diabetes was modelled in Balb/c mice by streptozotocin (STZ) (130 mg/kg, i.p.). GK-2 was administered at a dose of 0.5 mg/kg, i.p., subchronically. The evaluation of DNA damage was performed using the alkaline comet assay; the percentage of DNA in the tail (%TDNA) and the percentage of the atypical DNA comets (“ghost cells”) were determined. Results: STZ at this subthreshold dose produced a slight increase in glycemia and MDA. Meanwhile, pronounced DNA damage was observed, concerning mostly the percentage of “ghost cells” in the pancreas, the liver and kidneys. GK-2 attenuated the degree of hyperglycaemia and reduced the % of “ghost cells” and %TDNA in all the organs examined; this effect continued after discontinuation of the therapy. Conclusion: Early-stage diabetes is accompanied by DNA damage, manifested by the increase of “ghost cells” percentage. The severity of these changes significantly exceeds the degree of hyperglycaemia and MDA accumulation. GK-2 exerts an antihyperglycaemic effect and attenuates the degree of DNA damage. Our results indicate that the comet assay is a highly informative method for search of antidiabetic medicines.


2019 ◽  
Vol 2019.32 (0) ◽  
pp. 119
Author(s):  
Srikanth SURENDRANATH ◽  
Akira OYAMA ◽  
Ryoji TAKAKI
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document