Genetic Diversity and Phylogenetic Relationship of Saccharum spontaneum L. with Different Ploidy Levels Based on SRAP Markers

Sugar Tech ◽  
2019 ◽  
Vol 21 (5) ◽  
pp. 802-814 ◽  
Author(s):  
Xing-Hua Yu ◽  
Xian-Hong Wang ◽  
Qing-Hui Yang
2021 ◽  
Vol 64 (1) ◽  
pp. 7-16
Author(s):  
Qing Xia ◽  
Xiangyu Wang ◽  
Zhangyuan Pan ◽  
Rensen Zhang ◽  
Caihong Wei ◽  
...  

Abstract. The objective of this study was to assess the genetic diversity and phylogenetic relationship of nine sheep populations, including two famous high prolific populations and seven popular mutton populations raised in China. Overall, these sheep populations in this study exhibited a rich genetic diversity. Both the expected heterozygosity and Nei's unbiased gene diversity ranged from 0.64 to 0.75, with the lowest value found in Dorset sheep (DST) and the highest in Hu sheep (HUS) and Ba Han sheep (BAS). The polymorphic information content (PIC) varied between 0.59 in DST and 0.71 in HUS and BAS. Specifically, for individual breeds, the small-tail Han sheep (STH) and the four introduced populations did not display the expected diversity; therefore more attention should be paid to the maintenance of diversity during management of these populations. The results of un-weighted pair-group method (UPGMA) phylogenetic tree and structure analysis indicated that the nine investigated populations can be divided into two groups. Suffolk (SUF) and DST were clustered in one group, and the other group can be further divided into three clusters: German Mutton Merino (GMM)–BAS–Bamei Mutton sheep (BAM), HUS–STH and Du Han (DOS)–Dorper (DOP). This clustering result is consistent with sheep breeding history. TreeMix analysis also hinted at the possible gene flow from GMM to SUF. Together, an in-depth view of genetic diversity and genetic relationship will have important implications for breed-specific management.


Author(s):  
Xiuli Lv ◽  
Yuan Guan ◽  
Jian Wang ◽  
Yanwei Zhou ◽  
Qunlu Liu ◽  
...  

To reveal the genetic diversity and genetic relationships of China’s Bergenia germplasm, 28 Bergenia accessions from different regions in China were analyzed by 24 intersimple sequence repeat (ISSR) markers. The results showed that 318 sites were amplified in all germplasm, including 307 polymorphic sites, and the percentage of polymorphic sites was 96.54%. Cluster analysis showed that the 28 accessions were divided into three categories, with a similarity coefficient of 0.5475. Bergenia purpurascens was clustered into one category; B. scopulosa was clustered into one category; and B. tianquaninsis, B. emeiensis, B. stracheyi, and B. crassifolia were clustered into one category. The results of the cluster analysis indicated that the 28 accessions were not completely classified by origin. Using the ISSR marker technique to analyze the phylogenetic relationship of Bergenia germplasm is helpful for identifying valuable resources and providing a theoretical basis for the selection of breeding parents.


2011 ◽  
Vol 8 (2) ◽  
pp. 99-110 ◽  
Author(s):  
Jianmin Qi ◽  
Jiantang Xu ◽  
Aiqing Li ◽  
Xiaofei Wang ◽  
Guangqing Zhang ◽  
...  

Author(s):  
Kristin Saltonstall ◽  
Graham D. Bonnett ◽  
Karen S. Aitken

AbstractPolyploidy may contribute to invasive ability as it can lead to high survival and fitness during establishment and enhance the processes of adaptation to novel environments by increasing genetic diversity in invading propagules. Many grasses are polyploid and many are aggressive invaders, making them persistent problems in disturbed environments worldwide. Today, vast areas of central Panama are dominated by Saccharum spontaneum, a perennial grass that originates from Asia. While widely regarded as invasive, it is not known when or how it arrived in Panama. We explore hypotheses regarding the timing and origins of this invasion through literature review and comparisons of genetic diversity in Panama with accessions from available sugarcane germplasm collections, highlighting historical accessions that were likely brought to Panama in 1939 as part of a USDA sugarcane germplasm collection. Samples were haplotyped at two chloroplast loci and genotyped using eight microsatellite markers. All sequenced individuals from Panama belong to a single chloroplast lineage which is common worldwide and was common in the Historic germplasm collection. Although genotypic diversity was extremely high in all samples due to high ploidy, samples from Panama had reduced diversity and clustered with several accessions in the Historic collection which had the same haplotype and high ploidy levels. Our results suggest that accidental escape from the historical sugarcane germplasm collection is the likely origin of the S. spontaneum invasion in Panama. Intraspecific hybridization among several historical accessions and pre-adaptation to local conditions may have facilitated its rapid spread and persistence. We discuss the implications of our findings for biosecurity of germplasm collections.


Sign in / Sign up

Export Citation Format

Share Document