Relationship model for the drilling parameters from a digital drilling rig versus the rock mechanical parameters and its application

2018 ◽  
Vol 11 (13) ◽  
Author(s):  
Qi Wang ◽  
Hongke Gao ◽  
Bei Jiang ◽  
Jun Yang ◽  
Zhijin Lv
PLoS ONE ◽  
2021 ◽  
Vol 16 (7) ◽  
pp. e0253663
Author(s):  
Cancan Liu ◽  
Xigui Zheng ◽  
Niaz Muhammad Shahani ◽  
Peng Li ◽  
Cong Wang ◽  
...  

Measurement while drilling is an important part of the intelligent development of coal mines. The main purpose of this paper is to comprehensively analyze the response characteristics of borehole drilling parameters and find a better method to predict rock mechanical properties based on drilling parameters. Firstly, six concrete blocks and multiple specimens were prepared with different material ratios. Next, the concrete specimens were tested for mechanical properties in the laboratory. Meanwhile, the displacement, rotation speed, torque, and sound pressure level (SPL) were observed during the drilling of the concrete blocks. Finally, the response characteristics of drilling parameters such as rotation speed, rate of penetration (ROP), torque, and SPL were analyzed. Besides, multiple prediction models of rock mechanical parameters were obtained by data analysis. The research results indicate that the drilling process can be classified into the initial stage of drilling (fast speed) and the steady stage of drilling (slow speed). The torque work ratio accounts for more than 99%, which increases with the increase in rock strength. The penetration depth per revolution and torque work ratio are significantly related to rock uniaxial compressive strength, Brazilian tensile strength, cohesion, and elastic modulus. The ROP is the best choice for estimating rock mechanical parameters. This research provides an important reference for laboratory rock mechanics parameter testing and geological features detection based on drilling parameters.


Author(s):  
Magnus Nystad ◽  
Bernt Aadnoy ◽  
Alexey Pavlov

Abstract The Rate of Penetration (ROP) is one of the key parameters related to the efficiency of the drilling process. Within the confines of operational limits, the drilling parameters affecting the ROP should be optimized to drill more efficiently and safely, to reduce the overall cost of constructing the well. In this study, a data-driven optimization method called Extremum Seeking (ES) is employed to automatically find and maintain the optimal Weight on Bit (WOB) which maximizes the ROP. The ES algorithm is a model-free method which gathers information about the current downhole conditions by automatically performing small tests with the WOB and executing optimization actions based on the test results. In this paper, this optimization method is augmented with a combination of a predictive and a reactive constraint handling technique to adhere to operational limitations. These methods of constraint handling within ES application to drilling are demonstrated for a maximal limit imposed on the surface torque, but the methods are generic and can be applied on various drilling parameters. The proposed optimization scheme has been tested with experiments on a downscaled drilling rig and simulations on a high-fidelity drilling simulator of a full-scale drilling operation. The experiments and simulations show the method's ability to steer the system to the optimum and to handle constraints and noisy data, resulting in safe and efficient drilling at high ROP.


Author(s):  
Daiyan Ahmed ◽  
Yingjian Xiao ◽  
Jeronimo de Moura ◽  
Stephen D. Butt

Abstract Optimum production from vein-type deposits requires the Narrow Vein Mining (NVM) process where excavation is accomplished by drilling larger diameter holes. To drill into the veins to successfully extract the ore deposits, a conventional rotary drilling rig is mounted on the ground. These operations are generally conducted by drilling a pilot hole in a narrow vein followed by a hole widening operation. Initially, a pilot hole is drilled for exploration purposes, to guide the larger diameter hole and to control the trajectory, and the next step in the excavation is progressed by hole widening operation. Drilling cutting properties, such as particle size distribution, volume, and shape may expose a significant drilling problem or may provide justification for performance enhancement decisions. In this study, a laboratory hole widening drilling process performance was evaluated by drilling cutting analysis. Drill-off Tests (DOT) were conducted in the Drilling Technology Laboratory (DTL) by dint of a Small Drilling Simulator (SDS) to generate the drilling parameters and to collect the cuttings. Different drilling operations were assessed based on Rate of Penetration (ROP), Weight on Bit (WOB), Rotation per Minute (RPM), Mechanical Specific Energy (MSE) and Drilling Efficiency (DE). A conducive schedule for achieving the objectives was developed, in addition to cuttings for further interpretation. A comprehensive study for the hole widening operation was conducted by involving intensive drilling cutting analysis, drilling parameters, and drilling performance leading to recommendations for full-scale drilling operations.


2013 ◽  
Vol 798-799 ◽  
pp. 302-306
Author(s):  
Yu Le Hu ◽  
Tao Yang ◽  
Guo Wei Yang

To ensure wire-line core drilling process more safe, efficient and quality, a real time monitoring and control system for drilling rig was built based on virtual instrument technology. Currently, the geological exploration have more precise requirements of many parameters, this system is very helpful for geological exploration. The system took IPC as main controller and used multi-sensors through DAQ card or serial port to monitor multi-parameters. Simultaneously, instructions ordered by host computer through digital-to-analog output card transmit to actuator, such as solenoid valve, to control drilling processs parameters. LabVIEW graphic oriented software platform provides a flexible and reliable support for drilling parameters supervisory control and data acquisition system. This applied engineering software offers a complete monitoring for several parameters of drilling rig.


Author(s):  
Abdelsalam N. Abugharara ◽  
John Molgaard ◽  
Charles A. Hurich ◽  
Stephen D. Butt

Abstract Coring natural rocks (granite) and synthetic rocks (rock like material, RLM) using diamond impregnated coring bit was performed by A rigid coring system. RLM and granite were previously tested to be isotropic rocks by the author [1, 2, 3, 4] A baseline procedure was developed for isotropic rock characterization [2] and this work is to contribute to the developed baseline procedure by considering downhole dynamic weight on bit (DDWOB). The drilling parameters involved in the analysis included rate of penetration (ROP) depth of cut (DOC), rpm, and torque. All parameters were studied as a function of DDWOB at 300 and 600 input rpm. A fully instrumented laboratory scale rotary drilling rig was used with 5 liter/minute water flow rate. Samples were first cored in 47.6 mm diameter in the desired orientations. Samples of granite were cored in two perpendicular directions (vertical and horizontal) and samples of RLM were cored in three directions including vertical, oblique, and horizontal. The coring experiments were performed using 25.4 mm diamond impregnated coring bit. At each input rpm and at each applied static weight, multiple coring runs were repeated and then averaged; therefore, each point of the displayed data was averaged of at least three repeated experiments at the same inputs. DDWOB was recorded by a load cell fixed beneath the sample holder and connected to a Data Acquisition System that records at 1000 HZ sampling rate. Several sensors were used to record the required data, including operational rotary speed, advancement of drill bit for ROP calculation, and motor current for torque measurement. Results showed similar trends in different orientations at the same inputs demonstrating RLM and granite isotropy. The results also showed the influence of DDWOB on ROP, DOC, rpm, and torque (TRQ) expanding the baseline procedure through considering DDWOB for isotropic rock characterization.


Sign in / Sign up

Export Citation Format

Share Document