Comparison of artificial neural network (ANN) and linear regression modeling with residual errors to predict the unconfined compressive strength and compression index for Erbil City soils, Kurdistan-Iraq

2021 ◽  
Vol 14 (6) ◽  
Author(s):  
Yousif Mawlood ◽  
Ahmed Salih ◽  
Rizgar Hummadi ◽  
Ahmed Hasan ◽  
Hawkar Ibrahim
Author(s):  
Jatinder Kumar ◽  
Ajay Bansal

The experimental determination of various properties of diesel-biodiesel mixtures is very time consuming as well as tedious process. Any tool helpful in estimation of these properties without experimentation can be of immense utility. In present work, other tools of determination of properties of diesel-biodiesel blends were tried. A traditional statistical technique of linear regression (principle of least squares) was used to estimate the flash point, fire point, density and viscosity of diesel and biodiesel mixtures. A set of seven neural network architectures, three training algorithms along with ten different sets of weight and biases were examined to choose best Artificial Neural Network (ANN) to predict the above-mentioned properties of dieselbiodiesel mixtures. The performance of both of the traditional linear regression and ANN techniques were then compared to check their validity to predict the properties of various mixtures of diesel and biodiesel. Key words: Biodiesel; Artificial Neural Network; Principle of least squares; Diesel; Linear Regression. DOI: 10.3126/kuset.v6i2.4017Kathmandu University Journal of Science, Engineering and Technology Vol.6. No II, November, 2010, pp.98-103


Materials ◽  
2019 ◽  
Vol 12 (22) ◽  
pp. 3708 ◽  
Author(s):  
In-Ji Han ◽  
Tian-Feng Yuan ◽  
Jin-Young Lee ◽  
Young-Soo Yoon ◽  
Joong-Hoon Kim

A new hybrid intelligent model was developed for estimating the compressive strength (CS) of ground granulated blast furnace slag (GGBFS) concrete, and the synergistic benefits of the hybrid algorithm as compared with a single algorithm were verified. While using the collected 269 data from previous experimental studies, artificial neural network (ANN) models with three different learning algorithms namely back-propagation (BP), particle swarm optimization (PSO), and new hybrid PSO-BP algorithms, were constructed and the performance of the models was evaluated with regard to the prediction accuracy, efficiency, and stability through a threefold procedure. It was found that the PSO-BP neural network model was superior to the simple ANNs that were trained by a single algorithm and it is suitable for predicting the CS of GGBFS concrete.


2013 ◽  
Vol 3 (4) ◽  
pp. 243-250 ◽  
Author(s):  
Samira Arabgol ◽  
Hoo Sang Ko

Abstract Prompt and proper management of healthcare waste is critical to minimize the negative impact on the environment. Improving the prediction accuracy of the healthcare waste generated in hospitals is essential and advantageous in effective waste management. This study aims at developing a model to predict the amount of healthcare waste. For this purpose, three models based on artificial neural network (ANN), multiple linear regression (MLR), and combination of ANN and genetic algorithm (ANN-GA) are applied to predict the waste of 50 hospitals in Iran. In order to improve the performance of ANN for prediction, GA is applied to find the optimal initial weights in the ANN. The performance of the three models is evaluated by mean squared errors. The obtained results have shown that GA has significant impact on optimizing initial weights and improving the performance of ANN.


Sign in / Sign up

Export Citation Format

Share Document