An Ensemble Method for Radicalization and Hate Speech Detection Online Empowered by Sentic Computing

Author(s):  
Oscar Araque ◽  
Carlos A. Iglesias
Author(s):  
Patricia Chiril ◽  
Endang Wahyu Pamungkas ◽  
Farah Benamara ◽  
Véronique Moriceau ◽  
Viviana Patti

AbstractHate Speech and harassment are widespread in online communication, due to users' freedom and anonymity and the lack of regulation provided by social media platforms. Hate speech is topically focused (misogyny, sexism, racism, xenophobia, homophobia, etc.), and each specific manifestation of hate speech targets different vulnerable groups based on characteristics such as gender (misogyny, sexism), ethnicity, race, religion (xenophobia, racism, Islamophobia), sexual orientation (homophobia), and so on. Most automatic hate speech detection approaches cast the problem into a binary classification task without addressing either the topical focus or the target-oriented nature of hate speech. In this paper, we propose to tackle, for the first time, hate speech detection from a multi-target perspective. We leverage manually annotated datasets, to investigate the problem of transferring knowledge from different datasets with different topical focuses and targets. Our contribution is threefold: (1) we explore the ability of hate speech detection models to capture common properties from topic-generic datasets and transfer this knowledge to recognize specific manifestations of hate speech; (2) we experiment with the development of models to detect both topics (racism, xenophobia, sexism, misogyny) and hate speech targets, going beyond standard binary classification, to investigate how to detect hate speech at a finer level of granularity and how to transfer knowledge across different topics and targets; and (3) we study the impact of affective knowledge encoded in sentic computing resources (SenticNet, EmoSenticNet) and in semantically structured hate lexicons (HurtLex) in determining specific manifestations of hate speech. We experimented with different neural models including multitask approaches. Our study shows that: (1) training a model on a combination of several (training sets from several) topic-specific datasets is more effective than training a model on a topic-generic dataset; (2) the multi-task approach outperforms a single-task model when detecting both the hatefulness of a tweet and its topical focus in the context of a multi-label classification approach; and (3) the models incorporating EmoSenticNet emotions, the first level emotions of SenticNet, a blend of SenticNet and EmoSenticNet emotions or affective features based on Hurtlex, obtained the best results. Our results demonstrate that multi-target hate speech detection from existing datasets is feasible, which is a first step towards hate speech detection for a specific topic/target when dedicated annotated data are missing. Moreover, we prove that domain-independent affective knowledge, injected into our models, helps finer-grained hate speech detection.


Author(s):  
M. Ali Fauzi ◽  
Anny Yuniarti

Due to the massive increase of user-generated web content, in particular on social media networks where anyone can give a statement freely without any limitations, the amount of hateful activities is also increasing. Social media and microblogging web services, such as Twitter, allowing to read and analyze user tweets in near real time. Twitter is a logical source of data for hate speech analysis since users of twitter are more likely to express their emotions of an event by posting some tweet. This analysis can help for early identification of hate speech so it can be prevented to be spread widely. The manual way of classifying out hateful contents in twitter is costly and not scalable. Therefore, the automatic way of hate speech detection is needed to be developed for tweets in Indonesian language. In this study, we used ensemble method for hate speech detection in Indonesian language. We employed five stand-alone classification algorithms, including Naïve Bayes, K-Nearest Neighbours, Maximum Entropy, Random Forest, and Support Vector Machines, and two ensemble methods, hard voting and soft voting, on Twitter hate speech dataset. The experiment results showed that using ensemble method can improve the classification performance. The best result is achieved when using soft voting with F1 measure 79.8% on unbalance dataset and 84.7% on balanced dataset. Although the improvement is not truly remarkable, using ensemble method can reduce the jeopardy of choosing a poor classifier to be used for detecting new tweets as hate speech or not.


2021 ◽  
Vol 13 (3) ◽  
pp. 80
Author(s):  
Lazaros Vrysis ◽  
Nikolaos Vryzas ◽  
Rigas Kotsakis ◽  
Theodora Saridou ◽  
Maria Matsiola ◽  
...  

Social media services make it possible for an increasing number of people to express their opinion publicly. In this context, large amounts of hateful comments are published daily. The PHARM project aims at monitoring and modeling hate speech against refugees and migrants in Greece, Italy, and Spain. In this direction, a web interface for the creation and the query of a multi-source database containing hate speech-related content is implemented and evaluated. The selected sources include Twitter, YouTube, and Facebook comments and posts, as well as comments and articles from a selected list of websites. The interface allows users to search in the existing database, scrape social media using keywords, annotate records through a dedicated platform and contribute new content to the database. Furthermore, the functionality for hate speech detection and sentiment analysis of texts is provided, making use of novel methods and machine learning models. The interface can be accessed online with a graphical user interface compatible with modern internet browsers. For the evaluation of the interface, a multifactor questionnaire was formulated, targeting to record the users’ opinions about the web interface and the corresponding functionality.


Author(s):  
Kristian Miok ◽  
Blaž Škrlj ◽  
Daniela Zaharie ◽  
Marko Robnik-Šikonja

AbstractHate speech is an important problem in the management of user-generated content. To remove offensive content or ban misbehaving users, content moderators need reliable hate speech detectors. Recently, deep neural networks based on the transformer architecture, such as the (multilingual) BERT model, have achieved superior performance in many natural language classification tasks, including hate speech detection. So far, these methods have not been able to quantify their output in terms of reliability. We propose a Bayesian method using Monte Carlo dropout within the attention layers of the transformer models to provide well-calibrated reliability estimates. We evaluate and visualize the results of the proposed approach on hate speech detection problems in several languages. Additionally, we test whether affective dimensions can enhance the information extracted by the BERT model in hate speech classification. Our experiments show that Monte Carlo dropout provides a viable mechanism for reliability estimation in transformer networks. Used within the BERT model, it offers state-of-the-art classification performance and can detect less trusted predictions.


Sign in / Sign up

Export Citation Format

Share Document