Plant species distribution in permafrost wetlands of the Great Hing’an Mountain valleys and its response to global climate change

2010 ◽  
Vol 21 (S1) ◽  
pp. 266-270 ◽  
Author(s):  
Ju Sun ◽  
Xiuzhen Li ◽  
Xianwei Wang ◽  
Jiujun Lü ◽  
Zongmei Li
Author(s):  
Angga Yudaputra ◽  
Izu Andry Fijridiyanto ◽  
Inggit Puji Astuti ◽  
Rizmoon Nurul Zulkarnaen ◽  
Ade Yuswandi ◽  
...  

Aims: This study aims to predict the future geographic distribution shift of invasive plant species Austroeupathorium inulifolium as the impact of global climate change. Study Design: The rising temperature and precipitation change lead to the geographic distribution shift of organisms. A. inulifolium belongs to invasive plant species that often causes a substantial economic loss and ecological degradation in the invaded areas. Modelling of species distribution using the climate-based model could be used to understand the geographic distribution shift of invasive species in the future scenario under global climate change. Place and Duration of Study: Center for Plant Conservation and Botanic Gardens – LIPI and 6 months. Methodology: The total 2228 of occurrence records were derived from the Global Biodiversity Information Facility (GBIF) database. The seven climatic variables were selected from 19 variables using a pairwise correlation test (vifcor) with a threshold >0.7. The ensemble model was used by combining Random Forest (RF) and Support Vector Machine (SVM). Results: Both two models are well-performed either using AUC or TSS evaluation methods. RF and SVM have AUC >0.95, and TSS >0.8. The predicted current distribution tends to have larger distribution areas compared to observed occurrence records. The predicted future distribution seems to be shifted in several parts of North America and Europe. Conclusion: The geographic distribution of invasive plant species A. inulifolium will be shifted to the Northern part of globe in 2090. Mean temperature of driest quarter and precipitation of warmest quarter are the two most important variables that determine the distribution pattern of the A. inulifolium. The predictive distribution pattern of invasive plant A. inulifolium would be important to provide information about the impact of climate change to the geographic distribution shift of this species.


PeerJ ◽  
2019 ◽  
Vol 7 ◽  
pp. e6731 ◽  
Author(s):  
Lili Tang ◽  
Runxi Wang ◽  
Kate S. He ◽  
Cong Shi ◽  
Tong Yang ◽  
...  

Background As global climate change accelerates, ecologists and conservationists are increasingly investigating changes in biodiversity and predicting species distribution based on species observed at sites, but rarely consider those plant species that could potentially inhabit but are absent from these areas (i.e., the dark diversity and its distribution). Here, we estimated the dark diversity of vascular plants in China and picked up threatened dark species from the result, and applied maximum entropy (MaxEnt) model to project current and future distributions of those dark species in their potential regions (those regions that have these dark species). Methods We used the Beals probability index to estimate dark diversity in China based on available species distribution information and explored which environmental variables had significant impacts on dark diversity by incorporating bioclimatic data into the random forest (RF) model. We collected occurrence data of threatened dark species (Eucommia ulmoides, Liriodendron chinense, Phoebe bournei, Fagus longipetiolata, Amentotaxus argotaenia, and Cathaya argyrophylla) and related bioclimatic information that can be used to predict their distributions. In addition, we used MaxEnt modeling to project their distributions in suitable areas under future (2050 and 2070) climate change scenarios. Results We found that every study region’s dark diversity was lower than its observed species richness. In these areas, their numbers of dark species are ranging from 0 to 215, with a generally increasing trend from western regions to the east. RF results showed that temperature variables had a more significant effect on dark diversity than those associated with precipitation. The results of MaxEnt modeling showed that most threatened dark species were climatically suitable in their potential regions from current to 2070. Discussions The results of this study provide the first ever dark diversity patterns concentrated in China, even though it was estimated at the provincial scale. A combination of dark diversity and MaxEnt modeling is an effective way to shed light on the species that make up the dark diversity, such as projecting the distribution of specific dark species under global climate change. Besides, the combination of dark diversity and species distribution models (SDMs) may also be of value for ex situ conservation, ecological restoration, and species invasion prevention in the future.


Plants ◽  
2019 ◽  
Vol 8 (10) ◽  
pp. 370
Author(s):  
Yinghua Jin ◽  
Jiawei Xu ◽  
Hongshi He ◽  
Mai-He Li ◽  
Yan Tao ◽  
...  

Significant replacement of shrub species by herbaceous species has been observed in the Changbai alpine tundra zone, China, since the 1990s. This study used plot surveys to analyze variations in the spatial distribution of dominant plants and to ascertain the changing mechanisms of dominant species in the alpine tundra zone. We found that the two previously dominant shrubs, Rhododendron chrysanthum and Vaccinium uliginosum, differed markedly in their distribution characteristics. The former had the highest abundance and the lowest coefficient of variation, skewness, and kurtosis, and the latter showed the opposite results, while the six herb species invaded had intermediate values. R. chrysanthum still had a relatively uniform distribution, while the herbaceous species and V. uliginosum had a patch distribution deviating from the normal distribution in the tundra zone. Micro-topography and slope grade had stronger effects on the spatial distribution of the eight plant species than elevation. Herbs tended to easily replace the shrubs on a semi-sunny slope aspect, steep slope, and depression. Overall, the dominance of dwarf shrubs declined, while the herbaceous species have encroached and expanded on the alpine tundra zone and have become co-dominant plant species. Our results suggest that various micro-topographic factors associated with variations in climatic and edaphic conditions determine the spatial distribution of plants in the alpine tundra zone. Future climate warming may cause decreased snow thickness, increased growing season length, and drought stress, which may further promote replacement of the shrubs by herbs, which shows retrogressive vegetation successions in the Changbai alpine tundra zone. Further studies need to focus on the physio-ecological mechanisms underlying the vegetation change and species replacement in the alpine tundra area under global climate change.


Sign in / Sign up

Export Citation Format

Share Document