Runoff variation law and its response to climate change in the headstream area of the Keriya River basin, Xinjiang

2011 ◽  
Vol 22 (6) ◽  
pp. 780-791 ◽  
Author(s):  
Hongbo Ling ◽  
Qingqing Zhang ◽  
Wei Shi ◽  
Hailiang Xu
Author(s):  
J. S. Wu ◽  
Y. P. Li ◽  
J. Sun ◽  
P. P. Gao ◽  
G. H. Huang ◽  
...  

Abstract A multiple scenario-based ensemble prediction (MSEP) method is developed for exploring the impacts of climate and land-use changes on runoff in the Naryn River Basin. MSEP incorporates multiple global climate models, Cellular Automata–Markov and Soil and Water Assessment Tool (SWAT) within a general framework. MSEP can simultaneously analyze the effects of climate and land-use changes on runoff, as well as provide multiple climate and land-use scenarios to reflect the associated uncertainties in runoff simulation and prediction. Totally 96 scenarios are considered to analyze the trend and range of future runoff. Ensemble prediction results reveal that (i) climate change plays a leading role in runoff variation; (ii) compared to the baseline values, peak flow would increase 36.6% and low flow would reduce 36.8% by the 2080s, which would result in flooding and drought risks in the future and (iii) every additional hectare of arable land would increase the water deficit by an average of 10.9 × 103 m3, implying that the arable land should be carefully expanded in the future. Results suggest that, to mitigate the impact of climate change, the rational control of arable land and the active promotion of irrigation efficiency are beneficial for water resources management and ecological environmental recovery.


Water ◽  
2019 ◽  
Vol 11 (10) ◽  
pp. 2039
Author(s):  
Huijuan Bo ◽  
Xiaohua Dong ◽  
Zhonghua Li ◽  
Xiaonong Hu ◽  
Gebrehiwet Reta ◽  
...  

Natural hydrological processes have been changed under the combined influences of climate change and intensive human activities in the Huangbaihe River Basin, where large-scale phosphate mining has been taking place. Therefore, evaluating the impact of climate change and intensive human activities on runoff variation and detecting the main driving factor leading to the variation are important for more efficient water resource management and more sustainable development of the regional economy. Despite numerous studies having been performed on this topic, little research focused on the impact of mining on runoff variation. The non-parametric Mann-Kendall (MK) trend test and accumulative anomaly methods were applied to identifying basic trends and change points of the hydro-meteorological elements over the period from 1978 to 2016. Then, the Soil Water and Assessment Tool (SWAT) and the Slope Changing Ratio of Accumulative Quantity (SCRAQ) were both used to quantify the contributions of climate change and anthropogenic activities on runoff variation. In this step, the runoff data were restored to their natural state before the construction of Xuanmiaoguan (XMG) dam. Due to the lack of locally observed evapotranspiration data, Global Land Evaporation Amsterdam Model and an empirical equation applied to obtain the evapotranspiration data. The results revealed that the change points are in 1985 and 2006. Therefore, the total period was divided into three periods, that is, the baseline period Ta (1978–1984), change period Tb (1985–2005) and change period Tc (2006–2016). Compared with the baseline period Ta, climate change dominates the runoff variation in the period Tb and is responsible for 60.5 and 74.4% of runoff variation, while human activities contribute the most to runoff variation for the period Tc (79.3 and 86.1%). Furthermore, an analysis of the underlying mechanism of underground phosphate mining indicates that mining can affect overland flow and baseflow simultaneously. This study can provide some information in determining the contributions of climate change and human activities in intensive phosphate mined basins and areas lack of evapotranspiration data.


2020 ◽  
Author(s):  
Ping Xie ◽  
Tao Yu ◽  
Linqian Wu ◽  
Ziyi Wu

<p>In the context of global climate change and intensive human activities, the runoff process in the Lancang River Basin has been greatly changed. This study proposed a lumped watershed hydrological model considering land use/cover change (LWHM-LUCC) for the frequency calculation and attribution analysis of annual runoff of Lancang River Basin from physical causes aspect. We first detected the variability of precipitation, evaporation, and runoff time series at annual time scale of the Lancang River Basin during 1961–2014 through the hydrological variation diagnosis system. Then, the inconsistent runoff frequency calculation method based on LWHM-LUCC model were applied to analyze the annual runoff frequency distribution in past, current and future period, respectively. Besides, the contribution rates of climate change and human activities on runoff variation were quantatively determined based on LWHM-LUCC model and scenarios simulation. The result showed that there was an abrupt increase of evaporation in 2002, and an abrupt decrease of runoff in 2004. From the distant past period, near past period, to the current period, the design runoff in the Lancang River Basin showed a declined trend, whereas the runoff in the current and future periods remained basically unchanged, and the difference between current and distant past period was much larger than that between current and near past period. The contribution rates of precipitation, evaporation, land use and other human activities to runoff variation were around 38%, 31%, 0% and 31%, respectively. This indicated climate change has greater impact on runoff variation than human activity in the Lancang River Basin.</p>


Land ◽  
2021 ◽  
Vol 10 (10) ◽  
pp. 1061
Author(s):  
Jiahao Zheng ◽  
Yi He ◽  
Xiaohui Jiang ◽  
Tong Nie ◽  
Yuxin Lei

The Loess Plateau is the main soil erosion area within the Yellow River Basin. Quantifying the contribution rate of climate change and human activities to runoff change can provide support for water resources management in the Yellow River Basin. Kuye River Basin is located in the Loess Plateau. As a first-class tributary of the Yellow River, it was selected as the study area. Runoff from the Kuye River Basin has decreased significantly since the 1990s owing to climate change and anthropogenic coal mining. The main objective of this study was to quantify the contribution and sensitivity of climate change and anthropogenic activities to runoff changes using three popular Budyko and elasticity coefficient methods, as well as to compare the similarities and differences among the three methods. The results show that: (1) Through four mutation point test methods, the change point of runoff in the study period of Kuye River Basin is 1997. (2) The elasticity coefficients calculated by the three Budyko methods showed that during the study period, the runoff was more sensitive to changes in precipitation, followed by the catchment surface characteristic parameters and the potential evapotranspiration. (3) All three Budyko methods can yield reasonable contributions of climate change and human activity to runoff changes. The three methods together indicate that the influence of the catchment surface characteristic parameters is the most important factor for the runoff variation in the Kuye River.


Author(s):  
Hitoshi UMINO ◽  
Maksym GUSYEV ◽  
Akira HASEGAWA ◽  
Yoji CHIDA
Keyword(s):  

2020 ◽  
Vol 186 ◽  
pp. 109544 ◽  
Author(s):  
Thundorn Okwala ◽  
Sangam Shrestha ◽  
Suwas Ghimire ◽  
S. Mohanasundaram ◽  
Avishek Datta

2020 ◽  
Vol 30 (1) ◽  
pp. 85-102 ◽  
Author(s):  
Qihui Chen ◽  
Hua Chen ◽  
Jun Zhang ◽  
Yukun Hou ◽  
Mingxi Shen ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document