Estimation of Anthropogenic Influences in Groundwater Quality of Shallow Aquifers of Moradabad City, Western Uttar Pradesh

2018 ◽  
Vol 91 (6) ◽  
pp. 711-716 ◽  
Author(s):  
Naseemus Saba ◽  
Rashid Umar ◽  
Ahsan Absar
2017 ◽  
Vol 12 (1) ◽  
pp. 61-67 ◽  
Author(s):  
Vinod Kumar ◽  
Surjeet Singh ◽  
Gopal Krishan

Groundwater quality of Agra district has been assessed considering twelve water quality parameters viz. pH, electrical conductivity (EC), total dissolved solid (TDS), chloride (Clˉ), bicarbonate (HCO3ˉ), sulfate (SO4²ˉ), silicon (Si), iron (Fe), aluminium (Al), calcium (Ca⁺⁺), magnesium (Mg⁺⁺) and sodium (Na⁺). Data on groundwater quality of fifteen blocks of the Agra district were collected for nine years (2006-2014) from the Ground Water Department, Government of Uttar Pradesh. The data are investigated using Wilcox and Piper diagrams with the help of Aquachem 2011.1 software. The assessment on suitability of groundwater quality for the irrigation purpose is done using sodium percentage (Na%), Sodium Absorption Ratio (SAR) and Residual Sodium Carbonate (RSC) for all the blocks. The results show that groundwater of various blocks of Agra district is of Na⁺- Clˉ, Ca2⁺- Na⁺- HCO3ˉ, Ca²+ - Mg²+ - Clˉ, Ca²+ - HCO3ˉ, Ca²+ - Clˉ, Na⁺- CIˉ, Ca²+ - Mg²+ - Clˉ - SO4²ˉ and Ca²+ - Na+ - HCO3ˉ type. It is also found that the groundwater quality of the blocks Barauli Ahir, Fatehapur Sikari, Saiyan, Achhnera, Shamsabad, Khandouli, Pinahat, Jaitpur Kalan and Bah falls under very good to medium category and can be used for the irrigation purpose. However, the groundwater quality for the blocks Bichpuri, Akola, Fatehabad, Khairagarh, Etmadpur and Jagner falls under Medium to very bad category and hence cannot be used for the irrigation purpose. The outcome of the study would be helpful to the farmers, policy makers and water management authorities in planning and management of irrigation water.


2011 ◽  
Vol 4 (4) ◽  
pp. 228-230
Author(s):  
Patil S.S Patil S.S ◽  
◽  
Gandhe H.D Gandhe H.D ◽  
Ghorade I.B Ghorade I.B

2015 ◽  
Vol 3 (2) ◽  
pp. 38 ◽  
Author(s):  
Shashi Kant ◽  
Y.V. Singh ◽  
Lokesh Kumar Jat ◽  
R. Meena ◽  
S.N. Singh

<p>In sustainable groundwater study, it is necessary to assess the quality of groundwater in terms of irrigation purposes. The present study attempts to assess the groundwater quality through Irrigation Water Quality Index (IWQI) in hard-rock aquifer system and sustainable water use in Lahar block, Bhind of district, Madhya Pradesh, India. The quality of ground water in major part of the study area is generally good. In order to understand the shallow groundwater quality, the water samples were collected from 40 tube wells irrigation water. The primary physical and chemical parameters like potential Hydrogen (pH), Total Dissolved Solids (TDS), calcium (Ca<sup>2+</sup>), magnesium (Mg<sup>2+</sup>), sodium (Na<sup>+</sup>), potassium (K<sup>+</sup>), bicarbonate (HCO<sub>3</sub><sup>-</sup>), carbonate (CO<sub>3</sub><sup>2-</sup>), chloride (Cl<sup>-</sup>), and nitrate (NO<sub>3</sub><sup>-</sup>) were analyzed for (irrigation water quality index ) IWQI. The secondary parameters of irrigation groundwater quality indices such as Sodium Adsorption Ratio (SAR), Sodium Soluble Percentage (SSP), Residual Sodium Carbonate (RSC), Permeability Index (PI), and Kellies Ratio (KR) were also derived from the primary parameter for irrigation water quality index (IWQI). The IWQI was classified into excellent to unfit condition of groundwater quality based on their Water Quality Index (WQI). The IWQI (82.5%+15.0%) indicate that slightly unsustainable to good quality of ground water. Due to this quality deterioration of shallow aquifer, an immediate attestation requires for sustainable development.</p>


2021 ◽  
Vol 11 (2) ◽  
Author(s):  
Arjun Ram ◽  
S. K. Tiwari ◽  
H. K. Pandey ◽  
Abhishek Kumar Chaurasia ◽  
Supriya Singh ◽  
...  

AbstractGroundwater is an important source for drinking water supply in hard rock terrain of Bundelkhand massif particularly in District Mahoba, Uttar Pradesh, India. An attempt has been made in this work to understand the suitability of groundwater for human consumption. The parameters like pH, electrical conductivity, total dissolved solids, alkalinity, total hardness, calcium, magnesium, sodium, potassium, bicarbonate, sulfate, chloride, fluoride, nitrate, copper, manganese, silver, zinc, iron and nickel were analysed to estimate the groundwater quality. The water quality index (WQI) has been applied to categorize the water quality viz: excellent, good, poor, etc. which is quite useful to infer the quality of water to the people and policy makers in the concerned area. The WQI in the study area ranges from 4.75 to 115.93. The overall WQI in the study area indicates that the groundwater is safe and potable except few localized pockets in Charkhari and Jaitpur Blocks. The Hill-Piper Trilinear diagram reveals that the groundwater of the study area falls under Na+-Cl−, mixed Ca2+-Mg2+-Cl− and Ca2+-$${\text{HCO}}_{3}^{ - }$$ HCO 3 - types. The granite-gneiss contains orthoclase feldspar and biotite minerals which after weathering yields bicarbonate and chloride rich groundwater. The correlation matrix has been created and analysed to observe their significant impetus on the assessment of groundwater quality. The current study suggests that the groundwater of the area under deteriorated water quality needs treatment before consumption and also to be protected from the perils of geogenic/anthropogenic contamination.


PLoS ONE ◽  
2018 ◽  
Vol 13 (9) ◽  
pp. e0204607 ◽  
Author(s):  
Malvika Saxena ◽  
Aradhana Srivastava ◽  
Pravesh Dwivedi ◽  
Sanghita Bhattacharyya

Sign in / Sign up

Export Citation Format

Share Document