Microstructure and properties of high-strength Cu–Ni–Si–(Ti) alloys

Rare Metals ◽  
2021 ◽  
Author(s):  
Yi-Hai Yang ◽  
Sheng-Yao Li ◽  
Zhen-Shan Cui ◽  
Zhou Li ◽  
Yun-Ping Li ◽  
...  
2009 ◽  
Vol 618-619 ◽  
pp. 97-100
Author(s):  
Yong Qing Zhao ◽  
Heng Lei Qu ◽  
Jun Chen

The recent shift in the design focus for aeroplanes from strength to damage tolerance has led to a subsequent shift in the focus of Ti alloy research. China first started to research Ti alloys with damage tolerance from the year 2000. The first product stemming from this research is a Ti alloy with high strength, high toughness and damage tolerance (TC21). TC21 exhibits high strength (UTS  1100MPa), high fracture toughness (K1c  70MPa.m1/2) and a low crack propagation rate (da/dN being similar to Ti-6-4 with  annealing). Another Ti alloy, named TC4-DT, has also been produced. It has moderate strength, along with high toughness and damage tolerance (UTS  900MPa, K1c  70MPa.m1/2, da/dN being similar to Ti-6-4 with  annealing). Both TC21 and TC4-DT are now undergoing rapid development, with the former alloy also being applied to a full scale aeronautical application. Both TC21 and TC4-DT have promising futures in the industry. They will be the main Ti alloys with damage tolerance utilised in the Chinese market.


2002 ◽  
Vol 73 (9) ◽  
pp. 392-402 ◽  
Author(s):  
Igor Y. Pyshmintsev ◽  
Christophe Mesplont ◽  
Sigrid Jacobs ◽  
Bruno C. De Cooman

2012 ◽  
Vol 520 ◽  
pp. 57-62
Author(s):  
De Hai Ping ◽  
S.Q. Wu ◽  
Y. Yamabe-Mitarai

The microstructural evolution and elevated temperature tensile properties of Ti-6.6Al-5.2Sn-1.8Zr-(0~3.8)Sc (wt%) alloys have been investigated. The Sc-added alloys showed improved yield strength at 650°C and 750°C and with the elongation above 10%. Minor addition of Sc was found to significantly reduce the as-cast grain size. Higher amount of Sc additions resulted in the formation of high density of Sc-oxide, which causes the high strength at elevated temperatures and the reduction of ductility. High density of α2-Ti3Al fine precipitates with an average size of about 20 nm were observed inside equiaxed primary α (αp) grains in the Sc-free or minor Sc added alloys. However, precipitation free zone (PFZ) also formed in those alloys, where grain boundaries are free from any precipitates. Higher Sc addition was found to hinder the formation of PFZ and α2–precipitates.


2014 ◽  
Vol 41 (9) ◽  
pp. 0903003
Author(s):  
王金凤 Wang Jinfeng ◽  
王立君 Wang Lijun ◽  
杨立军 Yang Lijun ◽  
李慷 Li Kang ◽  
李笑雨 Li Xiaoyu ◽  
...  

2020 ◽  
Vol 10 (3) ◽  
pp. 281-292 ◽  
Author(s):  
Saurabh Dewangan ◽  
Suraj Kumar Mohapatra ◽  
Abhishek Sharma

PurposeTitanium (Ti) alloys are in high demand in manufacturing industries all over the world. The property like high strength to weight ratio makes Ti alloys highly recommended for aerospace industries. Ti alloys possess good weldability, and therefore, they were extensively investigated with regard to strength and metallurgical properties of welded joint. This study aims to deal with the analysis of strength and microstructural changes in Ti-6Al-4V (Grade 5) alloy after tungsten inert gas (TIG) welding.Design/methodology/approachTwo pair of Ti alloy plates were welded in two different voltages, i.e. 24 and 28 V, with keeping the current constant, i.e. 80 A It was a random selection of current and voltage values to check the performance of welded material. Both the welded plates were undergone through some mechanical property analysis like impact test, tensile test and hardness test. In addition, the microstructure of the welded joints was also analyzed.FindingsIt was found that hardness and tensile properties gets improved with an increment in voltage, but this effect was reverse for impact toughness. A good corroboration between microstructure and mechanical properties, such as tensile strength, hardness and toughness, was reported in this work. Heat distribution in both the welded plates was simulated through ANSYS software to check the temperature contour in the plates.Originality/valueA good corroboration between microstructure and mechanical properties, such as tensile strength, hardness and toughness, was reported in this study.


2020 ◽  
Vol 321 ◽  
pp. 05010
Author(s):  
J. Stráský ◽  
J. Kozlík ◽  
K. Bartha ◽  
D. Preisler ◽  
T. Chráska

Revived interest for beta Ti alloys with increased oxygen content is motivated by the prospect of achieving material with low modulus and high strength simultaneously. Fine tuning of amount of oxygen and beta stabilizing elements is critical for achieving good mechanical properties. This study shows that powder metallurgy method of spark plasma sintering is capable of producing Ti-Nb-Zr-O alloys from elemental powders. This simple approach allows for quick sampling and production of several alloys with various chemical composition. Elemental powders were mixed with appropriate amount of titanium dioxide to achieve Ti-29Nb-7Zr-0.7O alloy. Sintering was performed at 1400 - 1500 °C for 15 – 30 minutes.


2019 ◽  
Vol 6 (8) ◽  
pp. 0865a7
Author(s):  
Tianlun Wang ◽  
Xiaojing Xu ◽  
Jie Zhang ◽  
Hanhui Chen ◽  
Chenyu Zhu ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document