An assessment into mechanical properties and microstructural behavior of TIG welded Ti-6Al-4V titanium alloy

2020 ◽  
Vol 10 (3) ◽  
pp. 281-292 ◽  
Author(s):  
Saurabh Dewangan ◽  
Suraj Kumar Mohapatra ◽  
Abhishek Sharma

PurposeTitanium (Ti) alloys are in high demand in manufacturing industries all over the world. The property like high strength to weight ratio makes Ti alloys highly recommended for aerospace industries. Ti alloys possess good weldability, and therefore, they were extensively investigated with regard to strength and metallurgical properties of welded joint. This study aims to deal with the analysis of strength and microstructural changes in Ti-6Al-4V (Grade 5) alloy after tungsten inert gas (TIG) welding.Design/methodology/approachTwo pair of Ti alloy plates were welded in two different voltages, i.e. 24 and 28 V, with keeping the current constant, i.e. 80 A It was a random selection of current and voltage values to check the performance of welded material. Both the welded plates were undergone through some mechanical property analysis like impact test, tensile test and hardness test. In addition, the microstructure of the welded joints was also analyzed.FindingsIt was found that hardness and tensile properties gets improved with an increment in voltage, but this effect was reverse for impact toughness. A good corroboration between microstructure and mechanical properties, such as tensile strength, hardness and toughness, was reported in this work. Heat distribution in both the welded plates was simulated through ANSYS software to check the temperature contour in the plates.Originality/valueA good corroboration between microstructure and mechanical properties, such as tensile strength, hardness and toughness, was reported in this study.

2020 ◽  
Vol 15 (4) ◽  
Author(s):  
Mahesh Mallampati ◽  
Sreekanth Mandalapu ◽  
Govidarajulu C

The composite materials are replacing the traditional materials because oftheir superior properties such as high tensile strength, low thermal expansion, high strength to weight ratio, low cost, lightweight, high specific modulus, renewability and biodegradability which are the most basic & common attractive features of composites that make them useful for industrial applications. The developments of new materials are on the anvil and are growing day by day. The efforts to produce economically attractive composite components have resulted in several innovative manufacturing techniques currently being used in the composites industry. Generally, composites consist of mainly two phases i.e., matrix and fiber. In this study, woven roving mats (E-glass fiber orientation (-45°/45°,0°/90°, - 45°/45°),UD450GSM)were cut in measured dimensions and a mixture of Epoxy Resin (EPOFINE-556, Density-1.15gm/cm3), Hardener (FINE HARDTM 951, Density- 0.94 gm/cm3) and Acetone [(CH3)2CO, M= 38.08 g/mol] was used to manufacture the glass fiber reinforced epoxy composite by hand lay-up method. Mechanical properties such as tensile strength, SEM analysis, hardness test, density tests are evaluated.


2020 ◽  
Vol 67 (1) ◽  
pp. 101-105
Author(s):  
Yongxin Zhou ◽  
Qian Li ◽  
Zhiguo Xing ◽  
Renze Zhou ◽  
Zhenhua Huang ◽  
...  

Purpose This paper aims to investigate the effect of aluminum addition on the microstructure and mechanical properties of Mg-8Gd-4Y-1Zn alloy. Design/methodology/approach Mg-8Gd-4Y-1Zn-xAl (x = 0, 0.5, 1.0, 1.5, 2.0 Wt.%) alloys were prepared by the conventional gravity casting technology, and then microstructures, phase composition and mechanical properties were investigated by material characterization method, systematically. Findings Results show that the as-cast microstructure of Mg-8Gd-4Y-1Zn alloy mainly consists of a-Mg matrix as well as Mg12REZn (18 R LPSO structure), and island-like Mg3(RE, Zn) phase is distributed at the grain boundary. The addition of a small amount of Al (0.5 Wt.%) can decrease the content of island-like Mg3(RE, Zn) phase, but significantly increase the content of long-period stacking ordered (LPSO) structure, resulting in the improvement of both tensile strength and elongation of Mg-8Gd-4Y-1Zn alloy. However, the addition of excessive Al will consume Re element and decrease the amount of LPSO structure, leading to the decrease of tensile properties. When the content of Al is 0.5 Wt.%, the tensile strength and elongation are 225 MPa and 9.0% of Mg-8Gd-4Y-1Zn alloy, which are 14% and 29% higher than that of Mg-8Gd-4Y-1Zn alloy, respectively. Originality/value Adding aluminum to Mg-8Gd-4Y-1Zn alloy strengthens its mechanical properties. And the effect of Al content on the alloy strengthening. The formation mechanism of LPSO structure with different aluminum content was revealed.


2021 ◽  
Author(s):  
Torgom Akopyan ◽  
Yury Gamin ◽  
Sergey Galkin ◽  
Alexander Koshmin ◽  
Tatiana Kin ◽  
...  

Abstract The study of microstructure and mechanical properties formation of A2024 alloy obtained by the multipass radial-shear rolling (RSR) method is discussed in this article. FEM simulation was carried out that made it possible to evaluate the influence degree of rolling temperature-velocity parameters on the strain state of material. It has been found the increase in rotary velocity of rolls significantly influences on the deformation heating of bar after RSR (predominantly in its surface layer). The combination of rolling temperature-velocity conditions at selection of deformation regime has complex effect on structure and properties formation. The analysis of sizes and distribution of phase particles has shown that the rolling at lower temperatures allowed to increase the mechanical strength due to the more intensive refinement of undissolved Fe-containing phase. The gradual decrease in the rolling temperature in each pass makes possible to achieve the high strength (UTS~430 MPa and YS~255 MPa) while maintaining the ductility level ~15%, that are comparable to ones obtained at some severe plastic deformation (SPD) methods.


2015 ◽  
Vol 766-767 ◽  
pp. 246-251 ◽  
Author(s):  
P. Pugalethi ◽  
M. Jayaraman ◽  
A. Natarajan

Aluminium based Metal Matrix Composites (MMCs) with Aluminium matrix and non-metallic reinforcements are finding extensive applications in automotive, aerospace and defence fields because of their high strength-to-weight ratio, high stiffness, hardness, wear-resistance, high-temperature resistance, etc. Composite materials are frequently chosen for structural applications because they have desirable combinations of mechanical characteristics. Development of hybrid metal matrix composites has become an important area of research interest in Material Science. In this work, the Aluminium alloy is reinforced with 3,5,7,9 wt. % of Al2O3 and 2 wt. % of SiC to prepare the hybrid composite. The present study is aimed at evaluating the physical properties of aluminium 7075 in the presence of silicon carbide, aluminium oxide and its combinations. The compositions are added up to the ultimate level and stir casting method is used for the fabrication of aluminium metal matrix composites. The mechanical behaviours of metal matrix composites like tensile strength, and hardness test are investigated by conducting laboratory experiments. Mechanical properties like micro hardness and tensile strength of Al7075 alloy increase with the addition of SiC and Al2O3 reinforcements.


Author(s):  
Jun Xiong ◽  
Yue Mao ◽  
Huihui Zhao

This study focuses on microstructure and mechanical properties as a function of location in additively manufactured high-strength weathering steel components using gas tungsten arc as the heat source. Variations of microstructure and mechanical properties in various locations are presented and analysed. The as-deposited high-strength weathering steel is composed of columnar grain morphology with proeutectoid ferrite, acicular ferrite, side plate ferrite and a small amount of pearlite microstructure in the top region, equiaxed grains with ferrite and pearlite in the middle region, and columnar grains in the near-substrate region with the microstructure similar to that in the top region. There exist obvious layer bands in the middle region, and the forming mechanism of the bands is addressed. Microhardness measurement and tensile strength testing indicate obvious changes in different regions, depending on location and direction of testing specimens. The microhardness in the middle region is inferior to that in both near-substrate and top regions. The ultimate tensile strengths in the travel and deposition height directions are approximately 553 and 506 MPa, respectively. Different locations exhibit heterogeneous tensile strength and elongation due to various microstructures and boundaries. The results indicate the feasibility to fabricate high-strength weathering steel components with good tensile properties using gas tungsten arc–based additive manufacturing.


2020 ◽  
pp. 095400832094035
Author(s):  
Islam K Boshra ◽  
Guo Lin ◽  
Ahmed Elbeih

The crosslinking agent is a vital key which affects the mechanical properties of composite solid rocket propellants (CSRPs). Under this scheme, the effect of crosslinking mixtures (CMs) based on trimethylolpropane (TMP) as a triol crosslinker and butanediol (BD) as a chain extender on CSRPs based on hydroxyl-terminated polybutadiene was investigated. A series of 27 propellant compositions was formulated to study the mechanical properties of the prepared CSRPs. The effect of changing the weight ratio of TMP to BD in the CM was studied. In addition, the influence of increasing the percentage of CM (from 0% to 0.5%) in the prepared samples was investigated. Also, the effect of the CM on CSRPs containing different curing ratio of NCO/OH = 0.7, 0.75, and 0.8 was studied to generate the largest possible strain-ability with high strength over different levels of curing conditions. The mechanical characteristics (tensile strength and strain) of the prepared CSRPs have been measured and plotted versus CM content, NCO/OH and TMP:BD ratio. Generally, the addition of CM leads to a remarkable enhancement in the propellant mechanical properties. Samples containing TMP:BD (2:1) provide the highest strength while samples containing TMP:BD (1:2) show the highest strain over all the NCO/OH ratios. Formulations with TMP:BD (1:1) give high strength with moderate strain. Variation in CM content has a remarkable influence on the mechanical properties of CSRPs. A wide range of tensile strength and strain were obtained from this study to offer variety of results suitable for different applications in the CSRPs technology.


Metals ◽  
2020 ◽  
Vol 10 (7) ◽  
pp. 854 ◽  
Author(s):  
Yongwei Liu ◽  
Fuwen Chen ◽  
Guanglong Xu ◽  
Yuwen Cui ◽  
Hui Chang

The microstructure and mechanical properties of a newly developed Fe-microalloyed Ti–6Al–4V titanium alloy were investigated after different heat treatments. The volume fraction and the morphological features of the lamellar α phase had significant effects on the alloy’s mechanical performance. A dataset showing the relationship between microstructural features and tensile strength, elongation, and fracture toughness was developed. A high aging temperature resulted in high plasticity and fracture toughness, but relatively low strength. The high strength favored the fine α and the slender β. The high aspect ratio of lamellar α led to high strength but low fracture toughness. The alloy with ~84 vol % α exhibited the highest strength and lowest fracture toughness because the area of its α/β-phase interface was the highest. Optimal comprehensive mechanical performance and heat-treatment procedures were thus obtained from the dataset. Optimal tensile strength, yield strength, elongation, and fracture toughness were 999 and 919 MPa, 10.4%, and 94.4 MPa·m1/2, respectively.


Author(s):  
Ahmed H. Maamoun ◽  
Yi F. Xue ◽  
Mohamed A. Elbestawi ◽  
Stephen C. Veldhuis

Additive manufacturing (AM) provides customization of the microstructure and mechanical properties of components. Selective laser melting (SLM) is the commonly used technique for processing high strength Aluminum alloys. Selection of SLM process parameters could control the microstructure of fabricated parts and their mechanical properties. However, process parameter limits and defects inside the as-built parts present obstacles to customized part production. This study is the second part of a comprehensive work that investigates the influence of SLM process parameters on the quality of as-built Al6061 and AlSi10Mg parts. The microstructure of both materials was characterized for different parts processed over a wide range of SLM process parameters. The optimized SLM parameters were investigated to eliminate the internal microstructure defects. Mechanical properties of the parts were illustrated by regression models generated with design of experiment (DOE) analysis. The results reported in this study were compared to previous studies, illustrating how the process parameters and powder characteristics could affect the quality of produced parts.


2019 ◽  
Vol 25 (6) ◽  
pp. 1127-1134 ◽  
Author(s):  
Yanhui Liu ◽  
Lingjie Zhu ◽  
Lei Zhou ◽  
Yongjiu Li

Purpose This paper aims to explore the influence of the reinforcement included either glass beads (GBs) or carbon fiber (CF) on the reinforced polyamide 12 (PA12) composite samples prepared by selective laser sintering (SLS). Design/methodology/approach In this paper, the microstructure and mechanical properties are investigated, and the results are compared with those obtained for non-reinforced pure PA12 samples prepared by SLS. Findings The tensile fracture surface of the non-reinforced pure PA12 sample presents strong micro-deformation within the crack origination zone between the melted PA12 matrix and the un-melted PA12 particle cores. As a result, the pure PA12 sample exhibits the greatest maximum elongation. The maximum tensile strength is obtained for the CF reinforced sample because of the strengthening effect of CF and the relatively good bonding between CFs and the PA12 matrix. The minimum tensile strength is obtained for the GB reinforced PA12 sample because of the relatively weak bonding between GBs and the PA12 matrix. Originality/value These results demonstrate that the characteristics of the interfaces between the reinforcement and the PA12 matrix have an important influence on the fracture mechanisms and mechanical properties of PA12 composites fabricated by SLS.


2016 ◽  
Vol 852 ◽  
pp. 344-348
Author(s):  
R. Mohammed Ryan ◽  
E. Sangeeth Kumar

The development of the friction stir welding being a solid state welding has provided an improved way of manufacturing aluminum joints in a quicker and reliable manner. The heat treatable aluminum alloy AA7075 is used substantially in the aerospace industry because of its high strength to weight ratio and good ductility. The objective of our work is to research the parameters of welding on the mechanical properties of friction stir welded joints of AA7075-T651. The parameters namely rotational speeds (500 rpm, 700 rpm, 900 rpm, 1100 rpm, 1300 rpm and 1500 rpm) were thought-about and table transverse speed of 50 mm/min, axial force of 8 KN is constrained throughout the welding process. The result of these parameters on weld quality is analyzed by its mechanical properties namely micro hardness and tensile strength.


Sign in / Sign up

Export Citation Format

Share Document