Effect of the magnetic field on the energy spectra of a quantum dot system

2019 ◽  
Vol 94 (11) ◽  
pp. 1705-1709
Author(s):  
Richa Rani ◽  
Vinod Kumar ◽  
S B Bhardwaj ◽  
Ram Mehar Singh ◽  
Fakir Chand
1966 ◽  
Vol 19 (3) ◽  
pp. 309 ◽  

Height distributions are presented for the atmospheric ionization rate and Balmer radiation resulting from precipitation of auroral protons. These results have been computed assuming proton fluxes with several different energy spectra and pitch-angle distributions about the magnetic field, the total proton energy range being restricted to 1-1000 keY.


2013 ◽  
Vol 2013 ◽  
pp. 1-4 ◽  
Author(s):  
Hojjatollah K. Salehani ◽  
Maedeh Zakeri

The light absorption of a ZnS quantum dot with a parabolic confinement potential is studied in this paper in the presence of magnetic field perpendicular to dot plane. The Schrodinger equation of a single electron is solved numerically, and energy spectra and wave functions are obtained. Then, the optical absorption coefficients in transition from ground state to different excited states are calculated. The effects the magnetic field and quantum dot width on the optical absorption are investigated. It is found that the optical absorption coefficient has a blue shift by increasing of magnetic field or confinement strength of quantum dot.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
K. Luhluh Jahan ◽  
Bahadir Boyacioglu ◽  
Ashok Chatterjee

Abstract The effect of the shape of the confinement potential on the electronic, thermodynamic, magnetic and transport properties of a GaAs quantum dot is studied using the power-exponential potential model with steepness parameter p. The average energy, heat capacity, magnetic susceptibility and persistent current are calculated using the canonical ensemble approach at low temperature. It is shown that for soft confinement, the average energy depends strongly on p while it is almost independent of p for hard confinement. The heat capacity is found to be independent of the shape and depth of the confinement potential at low temperatures and for the magnetic field considered. It is shown that the system undergoes a paramagnetic-diamagnetic transition at a critical value of the magnetic field. It is furthermore shown that for low values of the potential depth, the system is always diamagnetic irrespective of the shape of the potential if the magnetic field exceeds a certain value. For a range of the magnetic field, there exists a window of p values in which a re-entrant behavior into the diamagnetic phase can occur. Finally, it is shown that the persistent current in the present quantum dot is diamagnetic in nature and its magnitude increases with the depth of the dot potential but is independent of p for the parameters considered.


2015 ◽  
Vol 29 (23) ◽  
pp. 1550127 ◽  
Author(s):  
R. Khordad

In this paper, the specific heat, entropy and magnetic susceptibility of an asymmetric GaAs quantum dot (QD) are studied under the influence of temperature and a tilted external magnetic field. We first calculate the analytical wave functions and energy levels using a transformation to simplify the Hamiltonian of the system. Then, we obtain the analytical expressions for specific heat, entropy and magnetic susceptibility as the function of temperature, magnetic field and its direction for various anisotropy of the system. According to the results obtained from the present work, we find that (i) the specific heat and entropy are decreased when the magnetic field increases. (ii) When anisotropy is increased, the specific heat and entropy decrease. (iii) At large magnetic fields, the anisotropy has not important effect on specific heat and entropy. In briefly, the magnetic field, magnetic field direction and anisotropy play important roles in the specific heat, entropy and magnetic susceptibility of an asymmetric QD.


2011 ◽  
Vol 10 (04n05) ◽  
pp. 665-668 ◽  
Author(s):  
A. MERWYN JASPER DE REUBEN ◽  
K. JAYAKUMAR

The effect of geometry, concentration of Mn ion and the magnetic field on the binding energy of a donor and the donor bound magnetic polaronic shift in a finite Cd 1–x1 Mn x1 Te / Cd 1–x2 Mn x2 Te Quantum Dot within the effective mass approximation is carried out employing the variational principle. The results are presented and discussed.


2004 ◽  
Vol 18 (17n19) ◽  
pp. 2529-2533 ◽  
Author(s):  
XIANGHUA ZENG ◽  
JIAFENG CHANG ◽  
PENGXIA ZHOU

In this paper,the ground state energies of hydrogen-like impurity in a lens-shaped quantum dot ( GaAs / In 1-x Ga x As ) under vertical magnetic field have been discussed by using effective mass approximation and variational method. It gives that for a lens-shaped quantum dot, due to the asymmetry of the vertical and lateral bound potentials, the electronic ground state energies are related not only with the deviation distance but also with the deviation direction; for the spherical quantum dot, the ground state energy is only related with the distance of the impurity deviation, neither with vertical nor lateral deviation. And with the increasing of the magnetic field, the ground state energy is increasing.


Sign in / Sign up

Export Citation Format

Share Document